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Summary. Since the usual approaches to cooperative com-
putation in networks of neuron-like computating elements
do not assume that network components have any “prefer-
ences”. they do not make substantive contact with game
theoretic concepts. despite their use of some of the same
terminology. In the approach presented here, however. each
network component, or adaptive element, is a self-interested
agent that prefers some inputs over others and “works™ to-
ward obtaining the most highly preferred inputs. Here we
describe an adaptive element that is robust enough to learn
to cooperate with other elements like itself in order to fur-
ther its self-interests. It is argued that some of the long-
standing problems concerning adaptation and leaming by
networks might be solvable by this form of cooperativity,
and computer simulation experiments are described that
show how networks of self-interested components that are
sufficiently robust can solve rather difficult leaming prob-
lems. We then place the approach in its proper historical and
theoretical perspective through comparison with a number
of related algorithms. A secondary aim of this article is to
suggest that beyond what is explicitly illustrated here, there
is a wealth of ideas from game theory and allied disciplines
such as mathematical economics that can be of use in think-
ing about cooperative computation in both nervous systems
and man-made systems.
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Introduction

Cooperative and competitive are among the adjectives com-
monly used to describe the style of neural computation.
They express the perception that subtle aspects of brain
function are produced through the parallel activity of large
numbers of communicating decision-making entities, various-

' There is much research within Al dealing with interacting parallel
processes that does not fall under the connectionist label (e.g.,
Lesser and Corkill 1981). This research is distinguished from con-
nectionism chiefly because the individual components are complex
symbolic information processors rather than simpler neuron-like
units. This approach has been called Distributed Artificial Intelli-
gence and is a much less radical departure from conventional com-
putation than is connectionism

ly identified with neural subsystems such as columns, mod-
ules. netlets, or neurons. One of the earliest models making
this explicit is the reticular formation model of Kilmer et al.
(1969) in which regions of neuropil are cast in the role of
decision-making agents interacting to reach a “concensus”
that directs the animal’s action. Since then, many systems
employing similar principles have been studied (e.g. Amari
and Arbib 1977: Dev 1974; Didday 1976; Grossberg 1978,
1980: Julesz 1971; Marr and Poggio 1976). The general
theme of “‘cooperative computation” has been elaborated in
Amari and Arbib (1982) and is extensively discussed in
Arbib's article in this issue.

There is also growing interest in cooperative computation,
and other network approaches, in the allied fields of Cog-
nitive Science and Artificial Intelligence (Al), where the term
“connectionism” has been revived to refer to these approach-
es (see, for example, Feldman 1985; Hinton and Anderson
1981, for collections of relevant papers).! Not only have
advances in microelectronics made the physical realization of
brain-like hardware more of a possibility, but advances in
our understanding of some of the problems involved in vision,
motor control, and knowledge representation suggest that
such hardware offers advantages over conventional com-
putational architectures and may be necessary for real-time
performance.

The sense of cooperation and competition most common
in these studies is derived from social or ecological analogy:
cooperative processes are ones that enhance each other’s
survival; competitive processes do the opposite. In neural
terms, cooperation and competition are mediated, respective-
ly, by excitatory and inhibitory interactions, with mutually
excitatory sets of units forming “stable coalitions™, and
mutually inhibitory sets of units forming, for example,
“winner-take-all” circuits, to use Feldman's (1982) terminol-
ogy. Modelling formalisms tend to be derived from popula-
tion dynamics of mathematical ecology: systems of nonlinear
ordinary differential equations with cooperation and compe-
tition embodied in the form of the coupling functions.
Analysis and computer simulation of these systems provide
insight into the dynamics of the interacting network com-
ponents. Other studies concern forms of cooperativity that
are related to physical phenomena, such as ferromagnetism,
in which the interaction of large numbers of units can be
studied using statistical methods (e.g., Ackley et al. 1985;
Allanson 1956, Amari 1974; Beurle 1956; Cragg and Tem-
perley 1954; Geman and Geman 1983; Harth et al, 1970;
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Hopfield 1982: Hinton und Sejnowski 1983; Smolensky
1983 Wilson and Cowan 1972). Some of these studies are
discussed in the Section “Relationship of the 45 _ » element
to other adaptive elements.”

The research described in this article, on the other hand,
focuses on learning rather than network dynamics, and
the sense of cooperation and competition derives from the
theory of games as formulated by von Neumann and Morgen-
stern (1953). A central tenet of game theory is that the
players are “selfish™ agents that attempt to maximize their
individual utility or payoff. With this assumption. competi-
tion exists insofar as there are contlicts of interests among
the agents, and cooperative interaction only occurs if it
furthers the self-interests of the participants. Since the usual
approaches to cooperative computation do not assume that
network components have any “preferences”. they do not
make substantive contact with game theoretic concepts.
despite their use of some of the same terminology. In our
approach, however. each network component, or adaptive
element. is a self-interested agent that prefers some inputs
over others and “works™ toward obtaining the most highly
preferred inputs. This follows the basic idea of the theory of
the “hedonistic neuron™ due to Klopf (1972, 1982). which
we discuss below, iand allows us to illustrate network be-
havior that is cooperative in the game-theoretic sense. It is
argued that some of the long-standing problems conceming
adaptation and learning by networks might be solvable by
this approach, and computer simulation experiments are
described that show how networks of self-interested com-
ponents can solve rather difficult learning problems.

A secondary aim of this article is to suggest that beyond
what is explicitly illustrated here, there is a wealth of ideas
from game theory and allied disciplines such as mathematical
economics that can be of use in thinking about cooperative
computation in both nervous systems and man-made systems.
This is not a new suggestion, having been made in the Russian
literature best known in the West through the work of
Testlin (1973) and Varshavsky (1968, 1972), but here it has
been overshadowed by other theoretical approaches. Current
research in the West that continues this tradition is that of
Klopf (1972, 1982). Crane (1978). and the “theory of learn-
ing automata” (reviewed by Narendra and Thathachar 1974),
although the latter has largely remained an engineering dis-
cipline without making significant contact with theories of
biological information processing. Related research in math-
ematical psychology is the statistical learning theory begun
by Estes (1950) and Bush and Mosteller (1951a, 1955). but
this work has not made significant contact with theoretical
studies of neural networks. Similarly, more recent research
involving economic analyses of animal behavior (e.g.,
Staddon 1983) appears not to have been applied at the more
microscopic level of the behavior of neural subsystems.
Additional relevant current research, also not being related to
neural information processing, concerns the “selfish opti-
mization” methods that are being studied by computer
scientists for their applications in distributed computer

1The term random is not entirely satisfactory here since it is often
taken to mean produced according to a uniform probability distri-
bution. However, here it is taken to mean probabilistic but not
necessarily uniform. Further, note that by mechanistic we do not
necessarily mean deterministic

systems. For example, methods for resource allocation in de-
centralized economies developed by mathematical economists
are beinz adapted to manage the use of shared resources,
such as communication channels, in networks of computers
(Brooks 1983; Kurose et al. 1985; Yemini 1982; Yemini
and Kleinrock 1979). These methods illustrate that analogies
between societies of utility-maximizing individuals and net-
works of computing devices can yield useful algorithms. The
research described in this article provides additional examples
of the utility of this methaphor.

An essential feature of the mechanistic process our
adaptive elements use for furthering their self-interests is
random variation;® hence the term statistical cooperation,
We borrow aspects of algorithms developed by engineers
studying stochastic learning automata to provide adaptive
elements with learning abilities robust enough for them to
function effectively as adaptive network components. In
these algorithms random variation is the source of behavioral
variety from which etfective solutions are selected according
to their consequences in altering the elements® input. Each of
our network components has an endogenous noise process
without which cooperative phenomena emerge only in the
most simple cases,

Despite the suggestions our research makes regarding the
role of noise in nervous systems. and despite parallels be-
tween our research and theories of the neural basis of learn-
ing, the major source of constraint has been the problem-
solving capabilities of our systems rather than faithfulness to
current neurophysiological and neuroanatomical data. Our
position is that it is appropriate to adopt this engineering
methodology as long as the problems with which one is
concerned are important and nontrivial to solve, and as long
as one refrains from making unjustified claims about the
validity of the resulting constructions as models of specific
neural systems. Consequently, we do not strive to make our
simulated networks conform as closely as possible to pre-
sumed neural constraints. For example, the adaptive units
are basically linear threshold elements that are only crudely
similar to neurons. We could simulate units that more closely
resemble neurons, but the added complexity would obscure
the theoretical issues we are addressing, It is these issues,
which we believe are relevant to learning in both man-made
and biological networks. rather than superficial resemblance
to actual neural networks, that our research stresses,

The problem

We have focussed on the problem of obtaining directed leamn-
ing by adaptive networks that are more than one layer deep.
Although multilayered networks of linear threshold elements
can be constructed to implement any input/output function,
it is a highly nontrivial problem to devise algorithms that
permit networks to learn reliably and efficiently how to
realize desired nonlinear functions without being provided
with implementation details. In particular, learning algorithms
that work for single layers of adaptive elements cannot easily
be extended to multilayer networks. If elements more com-
plex than linear threshold elements were to be studied, then
one could obtain more complicated processing with fewer
elements, but the problem of obtaining effective learning
algorithms for networks would remain.



Understanding how learning can occur in complicated
networks is not only important for what it would suggest
about the operation of nervous systems, but it is also cemr§1
to establishing the utility of adaptive networks for Al appll-
cations. One of the problems with leamning machines using
the single-layer learning procedures is that learning proceeds
up to a certain point and then stops. When the parameters
that are adjusted by the leamning algorithm (in a network.
usually the connection weights) reach optimum values, the
degrees of freedom of the system are exhausted even though
the problem facing the system may be far fromsolved.* Some-
how. this parametric leaming should be augmented with
structural leamning by which the roles of the parameters in
determining behavior, and not just their values, are altered
by the learning process. Since structures can always be re-
garded as being parameterized, so that adjusting structures
amounts to adjusting more parameters. the distinction be-
tween these types of learning is not completely straight-
forward. However. what we mean by structural learning
generally involves a space of parameters that is so large.
and a performance evaluation surface that is so complex.
that the usual algorithms for parametric adaptation do not
work.

One can view the adjustment of a weight connecting two
units in a complex network as a structural adjustment since it
affects the role of other weights in generating network be-.
havior. A complex network will have very many adjustible
weights, and the relationship between changes in a weight
and changes in network performance (i.e., the gradient of the
network performance index with respect to the weight) will
be complex due to nonlinear dependencies on the weights of
other units — dependencies that do not make themselves
known through information locally available to the connec-
tion in question. Additionally, even if this gradient could
be determined locally, following it can lead to network per-
formance that is only locally optimal — there may be other
solutions, reachable only by coherent macro-mutations of
sets of connection weights, that are much better. This is the
classical “false-peak™ problem: local searches that follow
gradient information find only local performance peaks, and
global searches that do not suffer from this deficiency are
too slow for the large search spaces that arise in structural
learning. A large number of different approaches to this
problem have been studied, none of which provides a uni-
versally satisfactory solution. Minsky and Selfridge (1961)
provide a now classic account of this and other problems,
and a partial review of efforts to solve them can be found
in Barto (1984).

These fundamental problems for learning systems can
also be viewed as manifestations of the credirassignment
problem (Minsky 1961). This is the problem of correctly
assigning credit or blame to each of the actions and internal
decisions that contributed to the overall evaluation received.
This problem can become exceedingly difficult either as over-

One of the points of Minsky and Papert’s book (1969) criticizing
the perceptron, an early network using a single-layer learning rule
(see Section *‘Relationship of the 4 R_p clement to ather adaptive
elements™), is that the degrees of freedom of single-layer learning
procedures will always be exhausted before certain problems are
solved that are quite easy to pose. In other words, it does not require
pathological learning problems to thwart such systems
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all evaluations become more intrequern:. making it less clear
which overt actions were responabl= for changes in per-
formance, or as the leaming system becomes more complex,
making it less clear which internal decisions were responsible.
It is useful to divide the credit-assignment problem into two
subproblems. One subproblem is to determine how the
individual actions making up an action sequence should be
credited for the evaluation generated by the entire sequence.
The other subproblem is to use the evaluation credited to
each step in order to assign credit to the internal processes
of the leaming system that determined the action selected
on that step. Sutton (1984) calls these subproblems the
temporal and the structural credit-assignment problems
respectively. The cause of either type of credit-assignment
problem is initial uncertainty about the causal microstructure
of the interacting system and environment. Unless one is
willing to assume the existence of sufficient a priori knowl-
edge either built into the system or into an external teacher
(which we are not willing to assume), this uncertainty is
unavoidable. and mechanisms must be devised that reduce
it. This article primarily concerns structural credit assign-
ment. We have extensively studied temporal credit assign-
ment and results are reported elsewhere (Barto 1984; Barto
etal. 1983:Sutton 1984).

We believe that these difficulties in obtaining learning
by adaptive networks arise due to fundamental properties
of the problem and not of particular solution methods. Con-
sequently. it would be very surprising if in some form they
are not faced — and solved — by the adaptive mechanisms
of real neural networks. For example, how are multisynaptic
pathways established in the absence of a knowledgeable
agency that can instruct individual neurons? Genetic specifi-
cation plays a role. but it cannot account for the remarkable
adaptability of neural networks in the face of unforeseen
circumstances resulting from individual experience. It is high-
ly doubtful, for example, that detailed instructive informa-
tion is available for many types of sensorimotor learning
tasks that animals routinely perform.

Selfish network components

Although similar ideas had been related to biological infor-
mation processing by the research on the collective behavior
of automata such as that described by Tsetlin (1973) and
Varshavsky (1968, 1972), the idea of selfish neuron.like
components tor adaptive networks is due to Klopf (1972,
1982). In a 1972 monograph, Klopf presented the hypo-
thesis that neurons are self-interested “hedonistic™ agents
that direct their firing activity so as to cause certain types
of input patterns to appear on their input fibers and to
prevent the occurrence of other types. In order to be success-
ful, they must incorporate knowledge about the feedback
loops in which they are embedded. Although this is a rather
unorthodox hypothesis, there are several reasons to consider
it seriously. First, it makes explicit the idea of the self-
interested network component and thereby allows a host
of novel ideas to be brought to bear on problems of neural
organization. Second. the type of algorithm Klopf proposed
by which the adaptive components pursue their goals has
not been extensively studied. Whereas the network compo-
nents typically studied theoretically, such as those based on
Hebb's (1949) hypothesis of synaptic plasticity, can be
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regarded as single-unit analogs of animal behavior in classical
conditioning experiments. Klopf proposed that components
ought to behave as anulogs of instrumental conditioning
behavior where responses are selected according to their con-
sequences. As we shall see in the Section “Relationship of
the A5 _p element to other adaptive elements”, learning
under these conditions requires algorithms different from
those usually studied. And finally, as we hope our results
show, Klopt' makes valid suggestions about how some of the
classical theoretical problems in obtaining learning in multi-
layered networks might be solved by using self-interested
components.

What makes the idea of self-interested neurons unortho-
dox is that it is an inversion of the order by which certain
high-level properties are usually seen to emerge from under-
lying neural machinery. According to Klopf's hypothesis. the
sophisticated goal-directedness of animal behavior is not seen
as emerging at a high level from non-goal-seeking components:
rather. the cooperative activity ot selfish, goal-seeking neurons
gives rise to more sophisticated goal-directed behavior at
higher levels. It is beyond the scope of this article to attempt
a thorough discussion of the implications of this hypothesis
— the questions raised are not simple to resolve. In fact, some
of these questions have parallels with those raised by the
theory popularized by Dawkins’ book The Selfish Gene
(1976). a theory that has generated considerable debate
among evolutionary biologists. A sizable literature already
exists about this debate, included in which is an extensive
defense by Dawkins (1982), (see also Brandon and Burian
1984). Although evolution and learning in neural networks
are definitely not different instances of a single process, the
concepts of the selfish gene and the selfish neuron involve
a similar inversion of orthodoxy.

Some questions about cooperativity via self-interested
components, and about our theoretical work reported here,
can be easily addressed to avoid unnecessary misunderstand-
ing. For example, if goal-directed behavior is the result of the
cooperative interaction of self-interested adaptive compo-
nents. what determines the organizational grain at which
such self-interested adaptive behavior first appears? In Klopf’s
neural theory, the neuron is chosen as a starting point be-
cause it is the obvious candidate, but the important point is
that component self-interest, together with sufficient means
for furthering it, first appears at a relatively fine structural
grain. Our research is an attempt to study networks of units
possessing enough but not more behavioral sophistication to
allow them to leam to productively enter into cooperative
relationships with other units like themselves, Whether or not
neurons satisfy this criterion is an empirical question that our
simulation experiments obviously .do not address. Our re-
search does suggest, however, that the adaptive capacity
required for units to leam how to cooperate is significantly
more sophisticated than that possessed by the adaptive ele-
ments considered in most theoretical studies of adaptive net-
works.

*See the discussion of this issue in Szentigothai and Arbib (1974,
pp. 357-364. Harth et al. (1970} consider the case in which there
is “randomness in-the-small” but “design in-the-large™ by studying
organized networks whose components are randomly connected
netlets.,

Another question our approach raises concerns the role
of centralized mechanisms in both man-made intelligent sys-
tems and in brain function. Our view appears to be radically
decentralized to the extent that there is no role for central.
ized controls of any kind. For example, our view appears to
deny the existence of higher-level brain structures such as
centralized reinforcement areas. Although we stress parallel
distributed processing, it is not at all a consequence of our
approach that every function is thoroughly distributed. Sim-
ilarly, although the networks presented in this article learn
to implement mappings from input signals to output signals
without the intervention of any form of intemal memory,
it is by no means our intention to suggest that this is an
adequate view of how intelligent behavior arises from under-
lying network dynamics. The degree of abstraction inherent
in our approach should not be underestimated — in particular,
one should not identify the boundary between one of our
simulated networks and its environment with the boundary
between an organism and its environment. We have simply
not comimented upon high-level organization and how our
approach fits into an elaborate overall model of intelligent
behavior because we are focussing on specific issues involved
in decentralized computation,

Finally, although we occasionally find anthropomorphic
language most expressive when describing the behavior of
adaptive elements (and use the term “self-interested” through.
out). we do not ascribe conscious intentionality to the ele-
ments. The adaptive elements are completely described in
mechanistic terms (Section “A self.interested adaptive ele-
ment™) and can be regarded as purposive in the same way
that regulators and servomechanisms can. One of our major
points, however, is that mechanistic adaptive behavior can be
much more robust than that exhibited by these classical
negative feedback devices.

Stochastic nerworks

There are at least two distinct ways in which networks can be
stochastic. In the first, the attributes of elements and their
connection structure are randomly established, but the
resulting networks operate according to deterministic rules.
For example. connections between elements may be deter-
mined by a probabilistic rule based on the spatial distance
between the elements (e.g., Beurle 1956; Uttley 1965). This
anatomical randomness was assumed by many early neural-
network modellers, and the term “random network™ general-
ly refers to this type of system. While there is reason to
reject total specificity, the prevalence of this assumption in
that early research may be attributable to mistaking com-
plexity for randomness.* A major feature of the study of
randomly connected networks has been the use of “‘macro-
state” descriptions of network dynamics that ignore the be-
havior of individual units in the same way that a statistical
mechanical description of a gas abstracts away from the in-
dividual molecules (e.g., Allanson 1956; Amari 1974; Harth
et al. 1970; Wilson and Cowan 1972). In approaches to
pattern classification using networks, anatomical randomness
has been used to provide a set of sensory units with random-
ly chosen receptive fields in the hope that some of them
would be sufficiently useful (Rosenblatt 1962).

The second kind of stochastic network is more physiolog-
ically stochastic because the computational units use some
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kind of random process in their behavior. such as randomly
varying thresholds. Thus. independently of whether or not
the network's structure is specified randomly, its operation
has a random component. Contrary to what one’s intuition
may say, this kind of randomness can be positively useful
rather than a nuisance, There are man-made devices and algo-
rithms that use noise, sometimes called “jitter” or “dither”,
for a variety of purposes: to counteract effects of quantiza-
tion error in digital processes: to prevent a mechanism from
remaining in an unstable equilibrium state; and, most import-
antly for us, to facilitate a search process by providing the
variety that drives the search and possibly prevents con-
vergence to false performance peaks. The networks to be
described here are stochastic in this sense.

Although there have been many theoretical studies ot the
stochastic activity of single neurons {MacGregor and Lewis
1977: Moore et al. 1966, discuss several of them). and there
have been studies of how to obtain reliable computation
despite the presence of noise {(von Neumann 1956), we know
of relatively few approaches in which randomness is purpose-
futly introduced into a network in order to facilitate compu-
tation. The recent studies ot Ackley et zl. {1985). Hopfield
(1982), Hinton and Sejnowski (1983). and Smolensky (1983)
fall into this category (see the Section “Relationship of the
Apg _p clement to other adaptive elements™). Harth's (1976)
theory of visual perception uses randomness to provide
variety in a search for appropriate feature-specific enhance-
ment of visual input. In his Ph. D. thesis. Minsky (1954)
described the SNARC (Stochastic Neural-Analog Reinforce-
ment Calculator) which he constructed in 1951. It was an
adaptive network of stochastic components that roughly
corresponded to synapses rather than to entire neurons,
Farley and Clark (1954) experimented with adaptive elements
that are similar to the adaptive elements we have been study-
ing, and they used the term "statistical cooperation” to de-
scribe the behavior of their networks. There are other studies
relevant to biological information processing in which random-
ness is purposefully used but which do not explicitly deal
with networks of neuron-like elements. notably the stochas-
tic learning automata research referred to above and the
genetic algorithms of Holland (1975).

A self-interested adaptive element

Itis difficult to define precisely what a self-interested adaptive
element is. Although we have attempted a careful character-
ization of this type of adaptive capability (Barto and Sutton
1981a). any definition raises innumerable questions that
would take us far afield to address adequately. It is hoped
that the following informal definition together with a con-
crete example will suffice. By a self-interested adaptive ele-
ment we mean one that works toward causing its input to
rank as highly as possible according to its own measure of
preference. In order to do this the element must interact
with its environment in a closed-loop manner so that its
actions exert a causal influence on its input. Behavior is then
selected according to its consequences in altering the prefer-
ence of its input. The measure of preference need not be
defined on separate sensory ‘“snapshots” but can indicate
the relative desirability of extended time sequences of
sensory experiences. For example, the adaptive element
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to be described here receives a signal at each time step in-
dicating *‘reward” or “penalty”, and it learns to generate
actions so as to maximize the probability of receiving the
reward signal. It therefore works toward maximizing the
frequency of reward over its “lifetime”.

Although it is relatively easy to interpret the behavior of
a variety of systems as self-interested in this sense (for ex-
ample, a thermostat might be said to “‘prefer” sensing tem-
peratures close to its set point), it is important to distinguish
between such systems according to what they require of their
environments in order to successfully further their interests.
Some systems are successful only when interacting with very
restricted types of environments (for example, a thermostat
fails if its wires are crossed), whereas others can be success-
ful in a wide range of environments. We say a self-interested
system is more “‘robust™ than another if it can further its
interests when interacting with a wider range of environ-
ments.

Here we describe an adaptive element that is robust
enough to learn to cooperate with other elements like it-
self. The learning algorithm it employs is one of many with
which we have experimented and was first introduced by
Barto and Anandan {(1985). who called it the associative
reward-penalty. or Ap_p. 2lgorithm We call the adaptive
element the A, _p element. In this section, we describe the
element and present a simulation of single element; in the
next section. we present examples of the cooperative be-
havior of these elements. After that, we describe the 4, _,
element’s learning capabilities in detail with respect to its
behavior as a network component, and we place it in its
proper historical and theoretical perspective through com-
parison with a number of related algorithms.

The Ap _ p element

Figure 1 shows an adaptive element having # + 1 input path.
ways and one output pathway. The input pathways are of
two kinds. Those labelled x, through x,, are “normal” path.
ways that carry input signals generated by other elements of
the network or by the network’s external environment; x;(¢)
denotes the magnitude of the signal on pathway x;, 1 < i
< n, at time . The remaining pathway is a specialized “re-
inforcement™ pathway r: r(r) denotes the value of its signal
at time ¢. It is often convenient to allow signals on these
various pathways to take on positive and negative values,
Although the reinforcement pathway is shown as if it were
an actual physical pathway, it is not necessary to take this
view literally. It is better to regard it as a formally convenient
way to indicate the element’s preference for inpit patterns —
patterns accompanied by a value of r indicating reward are
preferred over those accompanied by a value indicating
penalty.® To each input pathway x;, 1 < i < n, is associated
a parameter, or weight, w;, with value w;(r) at time ¢, that is
adjusted by the learning algorithm. The pathway y carries the

*One could define a preference ordering directly over the pattems

that can appear over the pathways X,,..., X, for example, one

could let a pattern at time s be preferred over a pattern at time ¢ if,

say, X (s) < xg(¢) and x,(s) > x,(¢). By using a specialized input to
indicate ordering, we are studying certain aspects of all of these
possibilities simultaneously, although here we restrict attention to

just two preference clusses
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Fig. 1. A neuron-like adaptive element. [nput pathways labelled
x, through x,, carry non-reinforcing input signals. each of which l)ua
an amociated weight wy, | € § < a:the pathway labelled r i< a special-
ized input for delivering reinforcement: the unit’s output pathway
is labelled v

element’s output signal, which is computed from the normal
input signals and the weights according to a response map-
ping rule to be described; y'(r) denotes the magnitude of the
output signal at time ¢. The A _ p algorithm is easiest to ex-
press if y(r) is either +1 or —1. When we discuss networks.
{7y will be redetined to be either O or 1.

The A, _p element operates in discrete time, meaning
that ¢ = 1. 2., .., where each step is best regarded as a trial
ratker than a small time increment.® Assume that at the start
of the ¢ trial, the environment provides the element with
a pattern vector x(f) = (x; (¢}, . . .. x,(2)) of real numbers
over its (normal) input pathways. The element then emits
an action »(r) that is determined from the weighted sum
of the inputs by the following random thresholding process:

J +Lifs(ty+n(t)> 0;

1
| —1. otherwise; ()

yi)=

where s(r) = Z0, w;(r) x,(r) is the weighted sum of the
{normal) input signals and each n{t) is a random real number
(more precisely, the {n(¢), r > 1} are idependent, identically
distributed random variables). Let us assume for the moment
that each random number is chosen according to a mean-
zero normal distribution. According to this response map-
ping rule, the weighted sum s(t) determines the probability
of each response. For example, when s(r) = 0, then both out-
put values are equally likely; whereas when s(¢) > 0, then
y(t) = +1 is the more likely response, and when s(t) < 0.
then y(1) = —1 is the more likely response. The system be-
comes deterministic as s(¢) approaches +eo or —oa for each ¢.
Changing the weights therefore only changes the probabilities
of the output values. The random process n(t) is an endo-
genous source of noise, purposefully included in the element,
that can be regarded as noise in the membrane potential (to
borrow the neural termn). Altematively, the random process
{-n(¢)} can be viewed as a random threshold.

®We have not yet considered “‘real-time" versions ot this algorithm
in which events within trials are represented, although we have done
so for other algorithms (Sutton and Barto 1981)

'Clearly a temporally refined version of this ¢lement would have to
accomodate time delays between the action and the receipt of the
relevant reinforcement signal .

Upon receiving y(r), the environment sends to the ele-
ment a reinforcement signal r(¢) that takes the values +1 and
~1 10 respectively indicate “reward” (or “success”) and
“penalty™ (or “failure™) for producing output y(r) in the
presence of x(7).” Upon receiving this signal, the 4 r_pele
ment updates its weights, w;, 1 < i < n, according to the
following equation:

o lr(t) y(r) = E{y(0)ls(t)} ) x ) ifr(e) = +1;
Aw(r)= @)
Mo [r(n) p(r) — E{y()ls(e)} ) x,(¢) if r(t) = —1;

where Aw;(r) = wi(r + 1) —wi(r), p> 0,and 0 < A < 1.
E |y(t)ls(e)} . the expected value of the output given the
weighted sum, is a specific deterministic function of s(r)
that is built into the element and depends on the distribution
of the random variables. Here it suffices to regard it as an
indication of how the unit usually responds to the current
input pattern. Note that according to Eq. (2), the A5 _p
element adjusts its weights based on four types of informa-
tion: adopting the neural terms, it uses the presynaptic signal
x;. the postsynaptic signal y, the reinforcement signal  that
indicates the consequences of the unit’s activity, and a func-
tion of s(¢) that indicates what the element usually does for
the given stimulus pattern.

The A, _ p algorithm is an embelhishment of Thomdike's
(1911) “*Law of Effect":

Of several responses made to the same situation, those which are ac-
companied or closely followed by satisfaction to the animal will,
other things being equal, be more lirmly connected with the situation,
so that. when it recurs. they will be more likely to recur; those which
are accompanied or closely followed by discomfort to the animal
will, other things being equal, have their connections with that
situation weakened, so that, when it recurs, they will be less likely
to occur. The greater the satisfaction or discomfort, the greater
the strengthening or weakening of the bond. (p. 244)

To see how the Ag_p element accomplishes something
similar to this, suppose for simplicity that the input signals
are binary and that at trial ¢ a certain set of input pathways
become active (i.e.. the signal on each pathway in the active
set takes the value 1). Also suppose that the element produces
output p(r) = +1. either totally by chance or partially as
a result of a positive bias due to excitation by the active
input pathways. Let us say that there is no excitation so that
Ely()ls(z)} = 0. If the environment returns reinforcement
r{r) = +1 (reward), the product r(¢) y(r) is +1, and Eq. (2)
adds p to the weight of each active input pathway. Thus the
output p(r) = +1 is “more firmly connected with the situa-
tion™ indicated by the pattem of active input signals. When
that pattern, or a similar pattem, recurs, the probability of
producing the output +1 will be greater. On the other hand,
if the environment retumns reinforcement r(z) = —1 (penalty),
then r(r) y(r) = -1, and Eq. (2) substracts Ap from the
weight of each active pathway, thus weakening the connec-
tion. The case in which the element’s output is y(#) = —1 can
be analysed similarly.

If one assumes that whenever an action is followed by
a penalty signal, then the other action would have most like-
ly produced reward. it is reasonable to regard the product
r(r) y(t) as an estimate of what the output should have been
(since =1 x | = —1 and -l x —1 =1). We therefore think
of r(t) y(¢) as an estimate of the desired response to the in-
put pattern present on trial f. Unfortunately, one cannot
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always assume that the other action would have most likely
produced reward, and this terminology must not be taken
too literally. A major point. to be elaborated in the Section
“Theoretical analysis™, involves the subtle but critical diffi-
culties this creates for learning.

These difficulties require the leaming rule to have two
features to ensure its proper functioning: (1) asymmetry
with respect to reward and penalty, and (2) dependence of
the size of the weight change, and hence of the change in
action probabilities, on what the element “usually does”
in a situation. The amount of asymmetry depends on the
parameter A: as \ approaches O, leaming upon penalty plays
a decreasing role in the process. In our simulations we use
a small but nonzero value for A (e.g., 0.01). Although this
makes the rule a better model of animal leaming (and brings
it into better agreement with asymmetric versions of the
Law of Effect). our reasons for introducing this asymmetry
are purely tunctional and will be explained later. The use of
the term £{y(r)ls(z)! makes the learning process converge
properly. It causes the weights to change according to the
discrepancy between an estimate of what the element should
have done in the presence of stimulus pattern x(r) (i.e..
r{) v(¢)) and what it usually does in the presence of x(r).
The magnitude of weight modification decreases as the usual
response approaches the estimated desired response, and it
causes a relatively larger weight change when the desired re-
sponse is not a very likely output of the element. Additional
explanation of these features of the algorithm is presented
in the Section “Theoretical analysis™ where the Ap _p ele-
ment is discussed more theoretically.

According to Eq. (1), the A5 _p element uses a fixed
threshold of zero. Altematively, if one adopts the view in
which the threshold varies randomly, then the threshold has
a fixed mean value. There is a standard way to allow the
threshold to vary, or to let the mean of the random threshold
vary, as a result of a learning process. Let the input signal on
one of the normal input pathways always equal a positive
constant; for example, let x,(¢) = 1 for all ¢. Since the con.
tribution to the weighted sum, s(r), from this input is w, (¢),
we can regard the unit’s threshold on trial ¢ to be —w, (1).
Alternatively, if we regard the element as having a random
threshold, its mean value is —u —w, (), where u is the mean
of the random variable n(z). By altering w,, known as the
threshold weight, according to the rule used to alter the
other weights, the threshold is effectively varied in such
a way that a wider class of transfer functions can be learn-
ed.® All the adaptive elements in the networks we simulate
have a constant input value of 1 on pathway x,. Of course
one need not regard this input pathway as being literally
present, and we do not show it in the figures.

*A linear threshold unit with n weights and a fixed threshold of
zero divides the space of all possible input patterns, /", into two
regions by means of an (n — 1)dimensional hyperplane that passes
through the origin, If the threshold vaiies, the hyperplane need not
pass through the origin. See Nilsson (1965) or Duda and Hart (1973)

*In these tasks the actions of the learning system only affect the
probability of reward; they do not have any influence on the choice
of input pattems x. If this latter type of contingency were present,
the tasks would be more complex control problems and would
present difficultics beyond -the scope of the present article. See
Barto etal, (1983) or Sutton (1984}
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Simulation of a single A, _ p element

In order to illustrate the leaming behavior of an A, _ P
element, we present simulation results showing how a single
Ag _p clement is able to learn when the environment pro-
vides stimulus patterns and reinforcement feedback accord.
ing to the following probabilistic scheme. Let X be the set
of all stimulus patterns to be used in training. Each pattern
X € X is an n dimensional vector of real numbers. Suppose
that for each trial ¢ the environment selects a stimulus pat-
tern x(f) = x € X with probability £* and presents it to the
Ag _p clement via its » nommal input pathways. For each
pattemn x in X and each action y, the environment returns
reward (r(z) = +1) with probability d(x, y) when thed,_,
element emits action y in the presence of input pattern x.
Penalty (#(r) = —1) is delivered with probability 1 — d(x, y).
The element would maximize its probability of receiving re-
ward if it responded to each x in X with the action y that
corresponds to the largest reward probability. More precisely,
for each pattern x. let v* be the action such that d(», y*)
= max|d(x. +1). d(x. ~1)}: reward probability is maximized
when for all x in X the element produces output y{¢) = y* in
the presence of pattern x(7) = x with probability one. Learn-
ing tasks like this one are related to instrumental, or cued
operant. tasks used by animal learning theorists, and the
stimulus patterns in the set X correspond to discriminative
stimuli. However. since we have not yet thoroughly explored
the A, _p algorithm as a model of animal behavior in in-
strumental conditioning experiments, we prefer to use the
terminology of Barto and Anandan (1985) and call these
tasks associative reinforcement leaming tasks.®

In order to show the progress of the learning process we
use as a measure of performance the probability that the
element will receive reward on the average trial given its
current set of weights. This value, which we denote M, when
computed based on the weight values at trial 7, additionally
depends on the probability that each input pattern will occur
on a trial and the reward probabilities that characterize the
environmental contingencies. In particular, let pF 1% = Pr{y(r)
=+lix(t) =x} andp;'* =Pr{y(r)=—-1lx(r)=x} =1 -p*.
These are the action probabilities for trial ¢ conditional on
the presence of input pattern x. Although it is not explicit in
this notation, these probabilities are functions of the weight
values on trial ¢ and the distribution function of the random
number used in generating the action [Eq. (1)]. Given all this,
we can define our performance measure:

M= Z £ [Priri)=+lx(0)=x} ]
x€X

- X +1x - -lx
= I & (dierlpy*+dx -Dpg el
This measure is maximized when the optimal action for each
input pattern occurs with probability 1, in which case it is
M= T E¥max{d(x.+1).d(x,~1)}.
xXEX
The distribution function of the threshold noise used in

all the simulations described in this article is the logistic dis-
tribution, which we denote W, given by

Ws)=s — 1
b(s) e (3)

where T is a parameter. This is a sigmoidal function that is
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similar to a2 normal distribution function but is easier to
evaluate. It is also used in the studies of statistical coopera-
tivity of Ackley et al. (1985), Hinton and Sejnowski (1983),
and Smolensky (1983), where T is the “‘computational tem-
perature” of the system. As T approaches zero, the function
given by Eq. (3) approaches the step function with a dis-
continuity at s = 0, which means that the element becomes
more deterministic.

Given this distribution function, the term E{y(¢)Is(¢)} in
Eq. (2) becomes a specific function of s(¢). In particular,
since W(s) = Pr {n(t) < s}, we have that p;'* = Pr {s(t)
+ () < 0} = W(=s(r)), and p;'~* = 1 ~ W(—s(r)). There-
fore we have that

E{yilst)}) ==1-p7tx +1-p/tx
=1 = 2W¥ (=si1)

_estT )
ST 4 |

This is plotted as a function of s(z) for 7 = 1,0.5,and 0.25
in Figure 2. In all simulations presented in this article, we
set T = 0.5, so that this function has a slope of 1 at the
origin.

The task simulated here is an analog of a conditioned
inhibition procedure for instrumental conditioning. There are
two stimulus components: the presence of one component
alone signals the contingency in which action +1 is optimal,
and the presence of both components together signals the
contingency in which action —1 is optimal. One would
expect that the first stimulus component would become
excitatory and that the second would become sufficiently
inhibitory to counteract the excitation of the first. For this
task. then, the stimulus patterns are the vectors x(!) = (1.0)
and x( = (1.1), corresponding respectively to the cases in
which only the first stimulus component is presented and
both stimulus components are presented. These vectors are
equally likely to occur at each trial (§' = £* = 0.5). Since the
first stimulus component is | for both patterns, we could
regard the weight associated with it as a threshold weight
as described above. Both weights are set to zero at the start
of each sequence of trials, which makes the actions initially
equiprobable for both stimulus pattems.

The reward probabilities implemented by the element’s
environment are given by the following table:

X dix, -1) dix, +1)
(1.0) 0.6 0.9
(1.1 0.4 0.2

Table entry d(x, y) is the reward probability given that the
element produces action y when receiving x as input. Thus
it is optimal for the learning system to respond to (1,0) with
action +1 to obtain reward with probability 0.9, and to re-
spond to (1,1) with action —1 to obtain reward with proabili-
ty 0.4. Therefore, in this task M, = (0.9 + 0.4)/2 = 0.65,
and the initial overall reward probability is (0.6 + 0.9 + 0.4
+0.2)/4 =0.525.

Figure 3a shows results of simulating an 45 _p element
in this task with p = 0.5 and three different values of \:
001, 005, and 0.25. Plotted for each trial ¢ is the average
ot M, over 100 runs, where a run is a sequence of 5000 trials,
each starting with weight values set to zero and using differ.
ent random numbers. The dashed lines show theoretical
asvmptotic performance levels for the three values of \.
Exactly how performance varies with the parameters will
be treated in the Section “*Theoretical analysis™. Here just
note that this asymptote approaches the optimal perform.
ance level 0.65 as \ decreases and that the learning rate de-
creases as \ decreases. The average final weight vectors tor
A = 001. 0.05, and 0.25 are respectively (2.99, —4.05).
(2.73. =3.08), (1.91, —=1.71), meaning that in each case the
first stimulus component becomes excitatory and the second
becomes inhibitory. Figure 3b shows the perforrnance of
the A, _p element with A = 0.05 in a single run. All the
individual runs that we have observed show similar behavior.

From this simulation it is clear that it takes the Ag_p
element a considerable number of trials 1o approach asymp-
totic performance levels. However, tasks like this involve
several subleties that can make them quite difficult. The first
type of sublety would be present even if the element were
not required to discriminate between input patterns. Conse-
quently, let us focus only on the learning problem for a given
fixed input vector x. Note that the reward probabilities for
producing the two actions in the presence of x need not sum
to one: that is, it need not be true that d(x, +1) +d(x, ~1)
= 1. This means that for a given input x, it might be true that
no matter what action the unit produces, it usually receives
reward (i.e., d(x, +1) > 0.5 and d(x. -1) > 0.5, as for
pattern x{") in the simulation); or it might be true that no

.
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Fig. 2. Plots of £ { y()Is(2)} . When the
noise distribution function ¥ is the logistic

distribution function, E{y(n)1s(#)}as a func-
tion of s(¢) is sigmoidal. Here it is plotted
for T = 1, 0.5, and 0.25. The curve ap-
proaches the discontinuous step function
as T approaches zero. We use T = 0.5 in all
of the simulations reported here (except
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for a single sequence of 5000 trials

matter what action the unit produces, it usually receives
penalty (i.e., d(x, +1) < 0.5 and d(x, —1) < 0.5, as for pat-
tern x(2) in the simulation). Given these possibilities, the
feedback received from producing one action provides no
information about the suitability of the other action. This
implies that it is not possible to solve this type of problem
by any procedure that resembles the following: pick any one
action and perform it sufficiently often in the presence of x
to obtain a good estimate of the probability of reward
associated with it; -if the estimated reward probability is
greater than 0.5, then that action is the right one, otherwise
the other action is the right one. No matter how good (or
how bad) an action appears, the other action might be
better (or worse). Consequently, in the presence of each
input pattern, an algorithm must produce both actions suf-
ficiently often in order to figure out which one is better.

But what does it mean to perform each action sufficient-
ly often? Since one can never obtain a perfectly accurate
estimate of a probability by means of any finite number of

observations, each action, even the inferior one, must be
performed infinitely often. The following algorithm, for
example, always leaves a chance of deciding on the wrong
action: for a given input pattern, perform each action N
times, where & is as large as desired but finite, then choose
the action that yielded the largest proportion of rewards.
Obviously, no matter how large N is, the observed reward
frequency may be different from the actual reward probabili-
ty. But on the other hand one need not demand complete
certainty in making the decision, and hence one can simply
take NV as large as is required to make the decision with
a desired confidence level. This strategy, however, raises the
question of how the trials are to be allocated among the
actions. Does one perform one action N times in succession
before trying the other action; or would it be better to
continually intermix the trials of the actions so that there
is little chance of performing the worst action for long
periods of time”? What is the best way of doing this?

This last didlemma is fundamental to adaptation and
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learning. There is a tradeoff betwedn using knowledge al-
ready acquired in order to perform well and the necessity to
acquire more knowledge. In the decision problems being
considered. in order to improve the accuracy of the reward
estimate for the action that appears to be worst, the system
must temporarily abandon performming the action that appears
to be best. thereby probably sacrificing performance in
order to keep open the possibility of attaining optimal per-
formance in the limit. Systems need to maintain a balance
between these requirements. and what kind of balance is
appropriate depends on how stationary the environment is.
If the environment is changing rapidly, for example, then a
bias toward using current knowledge is appropriate since
careful knowledge-gathering may take too long to be use-
ful.'® Cover and Hellman (1970) and Robbins (1952) discuss
this tradeoft, and we were first made aware of it through the
work of Holland (19735).

These questions and others have made decision problems
under this kind of uncertainty a topic of considerable math-
ematical research. Several distinct theoretical traditions have
developed around these questions, and there are several ap-
proaches to designing algorithms. The theory on which the
A g _p algorithm is based is that of learning automata which
originated with the Russian research (e.g., Tsetlin 1973;
Varshavsky 1968, 1972) and has been extensively developed
since then (Narendra and Thathachar 1974). An independent
tui similar line of research was conducted by mathematical
psvchologists in the 1950s and 1960s (e.g., Atkinson et al.
1965; Bush and Estes 1959; Bush and Mosteller 1955). An-
other tradition concemns sequential decision problems and
the “two-armed bandit problem™ {e.g., Cover and Hellman
1970; Cover 1968; Robbins 1952). These problems have
been studied under a variety of assumptions such as finite
memory and finite time. Despite this well-developed theory,
we are not aware of algorithms that combine these ideas with
the discrimination abilities of linear threshold elements in the
way the A, _ p algorithm does. Neuron-like adaptive elements
studied in the past are not able to learn effectively if the
environment imposes contingencies like those in the simula-
tion.

In addition to these problems arising from the nondeter-
ministic nature of the environmental feedback, the task in
the simulation also illustrates problems involving the dis-
criminability of stimulus pattemns. At one extreme, all the
stimulus pattems are identical and no discrimination is pos-
sible. Here the task becomes one in which the system must
adapt to a changing environment with no clue as to when the
reward probabilities change. Performance is likely to be
poor since the system cannot respond selectively to different
situations. At the other extreme, all the stimulus pattems are
totally dissimilar so that any action can be associated with
any stimulus pattern. In this case, any necessary discrimina-
tions can be made but no transfer of training can occur from
one stimulus to another. Consequently, learning has to occur

' These differing requirements for differing degrees of environ-
mental stability are related to ecologists’ concepts of K-selection
and r-selection. K-selection favors characteristics suitable for slow-
ly-varying and predictable environments, such as large size, long
life, and few carefully nurtured offspring; r-selection favors charact-
eristics suitable for unstable environments, such as the ability to
reproduce rapidly. See Dawkins (1982)

separately for each stimulus pattem and is therefore likely to
be relatively slow.

The more interesting case in which similar stimulus
patterns must be discriminated falls between these extremes.
Suppose two input patterns are similar by virtue of their
sharing a subset of active stimulus components, but that the
optimal actions for each are different. This is the case illus-
trated in the simulated task. How can generalization between
the patterns due to their similarity be overcome? This
question was of great concern to psychologists studying
“stimulus sampling theory™ (Atkinson and Estes 1963), and
several methods were proposed to address it (Bush and
Mosteller 1951b; Restle 1955). The A, _ , element, however,
uses a method developed independently by engineers and
computer scientists who were studying pattem classification,
The A, _p element forms a linear discriminant function,
determined by the weight values, that can discriminate
between any two different but arbitrarily similar patterns
(where pattern similarity is determined by the vector dot
product). However, being forced to discriminate between
two patterns obviously has implications on the decisions that
are possible with respect to other patterns. Pattemn classifica-
tion theory therefore focusses on how decision rules parti-
tion the space of all possible stimulus patterns. The relation
between stimulus sampling theory and pattem classification
is discussed further by Barto (1984) and Sutton (1984), and
good introductions to the theory of pattem classification can
be found in Duda and Hart (1973) and Nilsson (1965).

This method of discriminating stimulus pattemns can also
be related to models of classical conditioning, such as that
of Rescorla and Wagner (1972), in which the total associative
strength of a stimulus is represented as linear combination of
the associative strengths of its component stimuli. Sutton
and Barto (1981) point out, for example, that the Rescorla/
Wagner model of classical conditioning is essentially identical
to a pattem<lassification method developed earlier by
Widrow and Hoff (1960). The A, _ , element is very closely
related to both of these systems as is detailed in the Section
“Relationship of the Az_p element to other adaptive
elements”. This implies that the A5 _p, element is capable
of producing analogs of all of the stimulus context effects
that are accounted for by the Rescorla/Wagner model — but
the paradigm resembles the instrumental, or cued operant,
paradigm rather than classical conditioning. An analog of
conditioned inhibition is illustrated by the simulation just
described, and analogs of overshadowing and blocking are
also produced by the Az _ p element. Behavior not included
in the Rescorla/Wagner model’s repertoire, such as latent in-
hibition, is also not produced by the 4, _p element.

The neurondike elements that are usually studied by
theorists are not designed to leam in tasks like the associative
reinforcement learning tasks illustrated here. In some cases,
adaptive elements can be modified to leam under reward/
penalty feedback, but the resulting elements are not able to
learn effectively for arbitrary reward contingencies. In the
next section, we discuss learning in networks and argue that
it is just this ability that allows the 45 _ » element to reliably
learn to cooperate with other elements in a network.

Networks of Ag _ p elements

The most commonly studied neuron-like adaptive elements



are capable of what engineers and computer scientists call
“leamning with a teacher™ or “supervised learning” (e.g.,
Duda and Hart 1973). In this paradigm, the element is pro-
vided with a signal that directly specifies what its response
should be for each stimulus pattern in a training set. The
element adjusts weights so that its output signals match these
training signals. This paradigm’s major interest to theorists
lies in the fact that since the resulting response rule applies
to pattems not presented during training, it produces a form
of generalization. This paradigm, which we discuss in more
detail in the Section “Relationship of the A5 _ p element to
other adaptive elements”, is closely related to the classical
conditioning paradigm and does not involve all of the suble-
ties of the associative reinforcement leaming task.

Adaptive elements designed for learning in this paradigm
reveal critical limitations when they are used as components
of adaptive networks. In order to train such a network, each
component element must be provided with its own individ-
ualized training signal. This means that there must be a
*‘teacher” that knows enough about what every component
must do that it can furnish each component with desired
responses for a sufficiently varied training sequence. Conse-
quently, although networks of such elements can be trained
to implement any associative mapping, the details of the
implementation must be worked out beforehand. The gener-
alization abilities of the elements can still make this worth-
while (e.g., Hinton 1981), but the process seems better de-
scribed as a form of programming rather than as a form of
learning — some agency needs to know from the start “*how™
the desired mapping is to be implemented by the network.
However, the type of network learning that is of interest
here, and which would be much more useful, occurs when
some agency just knows *“‘what” constitutes the desired be-
havior of the network, and the network, as it were, figures
out for itself how to accomplish it.

It is important to contrast this objective with what has
been called *“unsupervised learning”, “learning without
a teacher”, or “self-leamning” (e.g., Duda and Hart 1973).
Here, the learning process extracts structure that is inherent
in the input stream rather than forming associations in a
manner directed or constrained by an outside agency. It con-
structs ‘‘clusters”™ of patterns, where patterns in the same
cluster are more similar to one another than to patterns in
other clusters according to a built-in similarity measure. Un-
fortunately, the label “‘unsupervised” incorrectly suggests
that unsupervised learning is more difficult or more powerful
than is supervised learriing. It suggests that the learning sys-
tem is able to solve, without supervision, the same class of
problems a supervised leaming system requires supervision
to solve. However, the kind of clustering an unsupervised

" A qualification is in order here. If coupled to a component that
adaptively adjusts the built-in similarity measure based on system
performance, an unsupervised learning system can coatribute to
more powerful forms of directed learning

"By an agency in a network’s environment, we do not necessarily
mean an agency outside of the organism or device in which the net-
work resides; this agency may be another component of the overall
learning system, such as a module specialized for delivering rein-
forcement to other modules. It would be underestimating the
degree of abstraction inherent in our approach to identify the
boundary between a network and its environment with the bound.
ary between an organism and its environment
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leaming system does is not directed toward the satisfaction
of any constraint except that imposed by the built-in meas-
ure of similarity and perhaps a built-in specification of the
number of clusters. A supervised system is in fact more
adaptive than is an unsupervised system because it forms
clusters in order to solve problems posed to it by environ-
mental contingencies rather than to solve a problem of its
own.! Unsupervised leaming is more accurately regarded
as supervised leaming with a fixed, built-in teacher.

These observations are relevant to the present discussion
because unsupervised learning can be readily extended to
multilayered networks as illustrated by the *‘neocognitron”
of Fukushima (1980). Successive layers form clusters of the
clusters formed by preceding layers. Although hierarchical
clustering by a layered network is an extremely interesting
process, it doces not address the problem in which we are
interested, that is, the problem of leaming “how” to do
something on the basis of information only specifying
“what.”

Consider an adaptive network operating in an environ-
ment that can evaluate the behavior of the network, that is,
the collective behavior of the network's elements, but can.
not specify the desired behavior of each individual compo-
nent.'? This can occur in several ways. For example, the en-
vironment mayv be capable of evaluating the consequences of
the network’s behavior in controlling some aspect of the
overt behavior of the entire leaming system. Here, not only
is the proper behavior of each network component unknown,
but the proper behavior of the overall network may be re-
cognizable only through its effects, which may quite indirect,
on overt behavior. In other paradigms, the network’s environ-
ment may know the desired behavior of a subset of the net-
work’s components, where the remaining elements must
interact with these components in some unknown way in
order for them to perform as desired. In all of these cases,
structural leaming must take place, and a difficult structural
credit-assignment problems exists (Section *“Introduction”).

A learning task of this kind occurs when a network of
some arbitrary number of elements faces a problem similar to
the one to which we subjected a single Az _ , element in the
preceding section. The network’s environment presents stim-
ulus pattems to the network by making the patterns’ com-
ponents available as input to some subset of the network’s
elements. We call the elements that receive this external
stimulation the input elements. The output signals of another
subset of elements are received by the environment, and
pattemns of these signals constitute the “‘overt™ actions of the
network. These are the output elements, or to use the term
of Hinton and Sejnowski (1983), “visible elements.” The
elements that are not output elements (including any input
elements that are not output elements) we call the “hidden
elements™ after Hinton and Sejnowski (1983). Suppose that
the environment evaluates the activity of the visible elements
and broadcasts a reinforcement signal to all the elements of
the network. Since all elements receive the same reinforce-
ment, they have no conflicts of interest and constitute a
“team” according to game-theoretic terminology (Marshak
and Radner 1972).

If we view the problem from the perspective of an
individual adaptive element embedded in the interior of this
network, we can gain some understanding of the type of
learning capability such an element might have to possess.



240

Consequently, let us focus on the learning task faced by
one of the hidden elements. Even if the environment deter-
ministically evaluates the network’s actions, the relationship
between this element’s actions and the evaluation signal
will not appear to be deterministic. This is true because the
evaluation depends on the behavior of other elements, and
relationships between them, in addition to the behavior of
the element in question. Since it lacks knowledge about
what the other elements are doing and how their activity
influences the global behavior of the network, the given
element will perceive that the evaluation is randomly related
to its actions. In addition to this, the contingencies faced
by the element will vary with time as the other elements
adapt. Thus, even if the overall task faced by the network in-
volves only fixed deterministic contingencies, the task faced
by an individual element will involve nonstationary prob-
abilistic contingencies. The element must be able to detect
correlations between its actions and the reinforcement it re-
ceives that are buried in noise generated by the rest of the
network. This is why the 45 _ p element’s ability to improve
performance in arbitrary stochastic contingencies is essential
to its performance as an adaptive network component.

But how can a hidden element inprove its reward prob-
ability when its output cannot directly effect the environ-
ment? The only possibility is for its actions to assist visible
elements increase their reward probabilities; and this might
be possible only by these actions assisting intermediate ele-
ments, For example, a hidden element might adjust its
weights in order to produce a signal A that another hidden
element combines with other information to produce a signal
B, where signal B, in turn, allows a visible element to make
a required discrimination. This does not require “altruism™
on the part of the hidden element since its reward probabil-
ity increases along with that of any other element.!* The
problem is not to provide the elements with sufficient incen-
tive to cooperate in this way; it is rather to endow them with
sufficient ability to discover how they can contribute to
the common goal.

in the preceding discussion, we assumed that the rein-
forcement signal generated by the environment is broadcast
to all the elements of the network, but this is only one of
many possibilities. It represents a “worst case” in which no
knowledge exists within the learning system that can amel-
iorate the structural credit-assignment problem. If reinforce-
ment centers exist in the network’s environment that can send
appropriate individualized reinforcement signals to different
subregions of the network, then the task faced by an interior
element can be made easier. Such centers may exist in animal
brains, and would certainly be useful in man-made learning
networks, but we must ask where their knowledge comes
from. If it is innate, then the learning system already knows
something about how to implement the process being re-
quired by the environment, and structural credit assignment
is easier. However, except in the unlikely case that the

Y The situation is analogous to kin selection in evolutionary processes
in which genes are selected because they cause individuals to help
close kin, i.e., other organisms that are likelv to share those genes,
This can account for the evolution of certain forms of apparent
altruistic behavior. Here, since all the elements in a network receive
the same reinforcement signals, the elements are related to one
another in a way analogous to genetic relatedness

leaming system already knows how to solve any task it is
likely to face, the plight of an interior <lement that we have
described will always exist within the subregions of the net-
work over which reinforcement is uniform. On the other
hand, if such knowledgeable reinforcement centers acquire
their knowledge form experience, then it is likely that ele-
ments within these centers face learning problems similar
to the one we have described. In either case, then, the prob-
lem we are considering occurs within the network at some
level and to some degree. We now turn to some examples.

A minimal case of cooperative learning

Figure 4 shows a network of two A, _, elements, e, and
e;. Only e, receives stimulus patterns from the environment,
and only the action of e, is available to the environment
(e, is hidden; e, is visible). Suppose this network faces an
associative reinforcement learning problem like the one de-
scribed above for a single A, _ ; element. That is, the net-
work’s output, the output of e,, affects the reward prob-
ability in a manner that depends on the stimulus pattemn
presented to e,. Both elements receive the same reinforce-
ment signal. If there were no means for ¢, to communicate
with e;, the elements would be capable of achieving only
limited reward frequencies. The action of e, influences the
reinforcement of both elements, but in the absence of a com-
munication link, e; remains blind to the discriminative
stimulus and therefore cannot learn to respond selectively in
a discrimination task. On the other hand, in the absence of
a communication link, e, can sense the discriminative
stimulus but cannot influence the reinforcement received.
The complementary specialties of the two elements have
to be combined in order for each to attain optimal per-
formance. In simulating this situation, we arranged for the
action of e, to potentially influence e, by providing an
interconnecting pathway with an initial weight of zero.
If this weight can be adjusted properly, the network can
respond correctly. However, the correct value of the inter-
connecting weight depends on how e, has learned to respond
to its input. Conversely, the cormrect behavior of e, depends
on the value of the interconnecting weight, that is, on how
e has learned to respond to its input signals. Thus the two
elements must adapt simultaneously in a tightly-coupled
cooperative fashion in order to maximize reward frequency.
To be more specific, we set up the simulation in the
following way. Each element is provided with a constant
input to allow its threshold to vary (as described above)
and one other input pathway. We regard only this second
stimulus component as the stimulus pattern x, treating the
constant input as part of an element’s internal mechanism.
Although according to Eq. (1) A5 _p elements produce
actions +1 and -1, we find it convenient to recode these
to be 1 and 0, respectively, when we are considering net-
works. In other words, the 4, _ » mechanism works exactly
as specified by Eq. (1) and (2) (with y(r) = +1 or —1), but
an output signal of —1 is changed to 0 when transmitted
to other elements or to the network’s environment. We
think of the output values 1 and 0 as “responding" and “not
responding” respectively. With this recoding, each element of
the network in Figure 4 can therefore receive the input
“pattern™ O or 1, where for e, it is generated by the net-
work’s environment, and for e, it is the (recoded) output of e, .
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Environment

Fig. 4. A simple network of two Ap_ p elements. Only
e, receives the discriminative stimulus, x, and only

The reward probabilites implemented by the network’s
environment are given by the following table:

X d(x, 0) d(x» l)
0 0.9 0.1
1 0.t 0.9

Table entry d(x. y) is the network reward probability given
that e, receives x as input and e, responds with y as output,
that is, given that the network as a whole responds to x with
y. Thus it is optimal for the network to respond to x =0
with action 0 to obtain reward with probability 0.9, and to
respond to x = 1 with action 1 to obtain reward with prob-
ability 0.9. In this task M., = (0.9 + 0.9)/2 = 0.9, and the
initial overall reward probability (with all weights zero) is
(09 + 0.1 +0.1 +0.9)/4 =0.5. Note that if the network fails
to discriminate by responding identically to all input patterns,
the overall reward probability is (0.9 + 0.1)/2 =0.5.

There are two ways the network can solve this problem.
Let us denote the weight associated with e;s (nonconstant)
input pataiway wf, i = 1, 2. In the first solution, e, leamns
to fire only when stimulus x = | is present by setting its
threshold high (i.e., setting its threshold weight negative) and
setting w' positive. Element e, does the same thing — sets its
threshold high and w? positive — so that it fires only when
stimulated by e,’s firing. Consequently, the network as a
whole fires only when x = 1. In the second solution, e, learns
to fire at all times exceptr when stimulus x = | is present, and
e; learns to fire at all times except when e, fires. Then
when e, is silent in response to x = 1, e, is disinhibited and
so fires.

In simulating a trial with this network, and with all the
networks to be considered, the environment first presents
a stimulus pattern to the network, and then proceeding
from the input side of the network, we sequentially com-
pute the output of the successive elements so that their
actions are available as input to “downstream” elements.
This is possible because the networks described here do not
have recurrent connections. When the network’s overt
action is generated, the environment produces the reinforce-
ment signal, and all the elements update their weights. We

'“The research by Ackley et al. (1985), Hinton and Sejnowski (1983),
Hopfield (1982), and Smolensky (1983) dealing with stochastic
networks containing recurrent connections in probably relevant,
but we wish to avoid the restriction to symmietric connections that
is essential for their results, We do not see major difficulties with
using A _ p elements in networks with recurrent connections, but
we have not yet studied this case in detail

e, can affect reinforcement, r, which is delivered to both
elements

view the weight modifications as occurring simultaneously
for all elements, although this is actually done sequentially
by the computer program.

Some features of this tightly regimented procedure for
computing a trial can be relaxed without presenting major
difficulties. The environment can generate stimulus patterns,
monitor network actions, and generate reinforcement simul-
taneously and continuously. This would require that we pay
more attention to the real-time aspects of the problem than
we do here, but we do not think it would be difficult. The
addition of current connections within the network, however,
presents deeper issues that we have not yet considered.™

Figure 5a and b show the behavior of the network for
a typical sequence of 500 trials with A = 0.04 and p = 1.5.
Figure 5a shows the evolution of the behavior of ¢, in terms
of two graphs. The first shows the conditional probability
that e, fires (y; = 1) given that its (nonconstant) input is O,
and the second shows the same thing for input 1. Both
of these probabilities start at 0.5 since the weights are
initially zero, and they change in approximately the same
way for about the first 50 trials. This means that during
these trials the element is experimenting with firing and not
in the presence of both input signals. At this point the two
conditional probabilities show the beginning of differentia-
tion between the two cases, which becomes unequivocal by
about trial 80. From then on, with a few brief exceptions,
e, has a high probability of firing in response to an input
of 1 and a low probability of firing in response to an input
of 0. Figure 5b shows the evolution of the mapping im-
plemented by e, and e, acting together by showing the
probability that e, fires (y, = 1) for the different values of
the network input x (nor for the values of e,’s local input).
Since the network learns to respond correctly, e, learns
to remain silent unless excited by e,’s activity; that is, the
first solution is formed in which both w' and w?® become
positive and both units set high thresholds. Figure 5¢ shows
the evolution of the overall performance measure M,. Figure
5d is a histogram of the number of trials required to reach
a criterion of 98% of M_ . for each of 100 sequences of
trials. In all sequences the network reached this criterion
before 1500 trials. In 45% of the sequences, the network
produced the first solution; in the remainder it produced the
second.

A series of two elements in a discrimination task provides
one of the simplest examples we could devise to'demonstrate
statistical cooperativity of self-interested elements. It is clear
that the A, _p elements effectively form a link that permits
them to obtain higher reward rates than they could attain
if they were to act independently. Moreover, an element
contributes to the formation of this link only because do-
ing so furthers its interests. We interpret this as a form of
cooperativity in the literal game-theoretic sense. One may
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Fig. §. Simulation results for the two-element network. See text for explanation



regard the link as a kind of “agreement” by which the
elements form a coalition for mutual benefit. We have
simulated series of 3, 4, and 5 elements with appropriate con-
nections being made in all cases, although learning slows
considerably as the depth of the network increases. Although
the discrimination required in these tasks is not difficult,
the necessity to construct a long chain of elements that faith-
fully transmits the discriminative stimulus is quite difficult.
The cormect behavior for any element depends on the be-
havior implemented by all the other elements so that the
solution cannot be constructed from stable solutions to
subtasks. This has implications, which we discuss below,
about what initial network architectures might be expected
to support faster learning than others.

A nonlinear task

In the task just described, cooperative leaming is required
only because the network lacks a direct pathway from in-
put to output. The task itself is easily within the capabilities
of a single element. Here we illustrate the simplest example
of a task that cannot be solved by a single linear threshold
element, or any single-layer network of them. In this prob-
lem the hidden element is not needed simply to transmit
a discriminative stimulus to the visible element; the hidden
element must also leam to respond to particular configura-
tions of its stimulus components in order to create a signal
that the visible element needs to behave properly. In our
simulation, a network of two A _ p elements is placed in a
task requiring it to form the two-component exclusive-or
mapping. The network has a single hidden element, e,, and
a single visible element, e,, which are connected as shown
in Figure 6. The stimulus patterns are all the two-component
binary vectors: x(® = (0,0), x() = (0,1), x(2 = (1,0), x(
= (1,1). These patterns are equally likely to occur on dny
trial. Each element also has a constant input and a threshold
weight.

The reward probabilities are given by the following table:

x d(x,0) dix. 1)
0,0) 0.9 0.1
(0,1) 0.1 0.9
1.0 0.1 0.9
(1) 0.9 0.1

Table entry d(x, y) is the reward probability given that the
network receives x as input and responds with action y. The
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optimal reward probability is M,, = 0.9, which is obtained
when the action of the visible element is the exclusive-or of
the pattern components, that is, when e, fires when one or
the other, but not both, stimulus components are present. It
must also not fire when both components are absent. A single
Ap _p element can be correct for at most three of the four
cases, yielding a reward probability of 0.7, since weights do
not exist that allow a single linear threshold element to re-
spond correctly to all four stimuli (see Duda and Hart 1973;
or Minsky and Papert 1969). However, the performance of
the network of Figure 6 can approach M, if the hidden
element learns to respond only to the fourth case and the
visible element takes advantage of this signal to “debug” its
responding. This can happen in several ways depending on
whether the hidden element learns to tum on or off for the
fourth case.

Figure 7 shows performance of the two-element network
for a typical sequence of S000 trials with p=1.5 and A=0.08.
In Figure 7a are graphs showing how the output probabilities
of the visible element develop for each input pattern; Figure
7b shows the analogous information for the hidden element;
and Figure 7c shows the overall performance of the network
as a function of the trial number. The visible element quickly
learns to respond correctly to all patterns except x(!) = (0,1)
(Fig. 7a), causing the network performance to level off near
0.7 (Fig. 7c). Eventually (+ =~ 1400) the hidden element
comes to respond reliably to x(!) and to reliably not respond
to any other pattern (Fig. 7b). At the same time, the visible
element begins to be excited by the hidden element’s signal
so that its output tends to be correct more frequently for
all four patterns (Fig. 7a). Once this mutually beneficial
relationship between e, and e, begins, it quickly develops
until amost perfect performance is achieved (the theoretical
asymptote is 0.892 for this value of A). It is clear that this is
a cooperative process. Figure 8 shows a histogram of the
number of trials until a criterion of 95% of M, is attained
for each of 100 sequences of trials. The average number of
trials until criterion is 3501, or about 875 trials for each
stimulus pattern. In‘all of the sequences the network reach-
ed this criterion before 15,000 trials.

This example illustrates how a hidden unit can learn to
respond to particular constellations of stimulus components,
and to influence other elements, in a useful way without
being provided with explicit instructional information. Con-
sequently, this two-element network can learn to implement
any of the 16 two-valued functions of two binary stimulus
components. This raises the following question: Why not
begin with elemental components that can individually
implement all of these functions? Or, more generally, why

B, - 0, Envl
xa }_/7

Fig. 6. Network for the exclusive-or task. The elements
must cooperate in order for the network to learn to

implement the exlusive-or mapping
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not use elements that can implement transfer functions
more complicated then memoryless linear threshold func-
tions? It is certainly the case, for example, that neurons are
not simple linear threshold elements. We have no objections
to this except that such a theoretical approach would not by
itself solve the problems we are addressing. It would still be
necessary to consider ways of obtaining cooperative inter-
actions among these more complex elements, and the same
problems we have been discussing would appear again. By
focussing on elements with relatively simple transfer func-
tions, we can study the problems of cooperative learning in
a relatively simple framework. Moreover, although it is not
illustrated here, we believe that there are no major obstacles
to extending what we have learned using linear threshold
elements to networks of more complicated primitives.

A more difficult nonlinear task

The network shown in Figure 9 has six input components
and a single principal output pathway (from element $).
There are 39 weights to adust: one associated with each of
the pathway intersections and one threshold weight for
each element. There is also a reinforcement pathway which
is not shown in the Figure. The reward contingencies im-
plemented by the network’s environment force the network

15000

OvER 20000

to learn to realize a multiplexer circuit in order to obtain
optimal performance. A multiplexer is a device with k ad-
dress input pathways and 2 data input pathways (here
k = 2) each of which is associated with a distinct k-bit
address. Given a pattern over the address pathways, ie., an
address, a multiplexer's output is equal to whatever signal
(0 or 1) appears on the data pathway associated with that
address. It therefore routes signals from different input path-
ways to a single output pathway depending on the “‘context™
provided by the pattern over the address pathways. For each
of the 64 possible input patterns, we rewarded each element
of the network with probability 1 if the visible element
(element S5) produced the correct output, and we penalized
each element with probability 1 otherwise. The input pattems
were chosen randomly for presentation to the net. All of
the elements implement the Ag _p algorithm with 7 = 0.5
except for the visible element (element 5) which uses 7 = 0
(and therefore essentially uses the perceptron algorithm; see
the Section “Relationship of the A, _p element to other
adaptive elements”). Figure 10 is a histogram of the number
of trials required for the network to respond 99% correctly
for 1000 consecutive trials in each of 30 sequences of trials
with p = 1 and X = 0.01. The average number of trials re-
quired is 133,149, or about 2080 presentations of each
stimulus pattern. In every sequence the network reached the
criterion before 350,000 trials.

Address

Data

Fig. 9. Network for the multiplexer task. Depending on
the activity pattern over the address pathways, one of the
data signals must be transmitted as the output of e;. All
elements receive the same reinforcement signal, which
is not shown



246

HUNSER OF
TRMKING 2

Sl

0 Di@0o0ad[

Fig. 10. Simulation results for the multiplexer
task. The histogram shows the number of
trials required for the network to reach
criterion performance in each of 30 sequences
of trials

150000 200000 250080
TRIALS UNTH. SOLUTION (NEAN®13S 148)

This is a difficult task since the natural generalizations
produced as a result of similarities among the stimulus
patterns tend to be irrelevant or misleading with respect to
the required actions of the network. Consequently, this task
represents a rather stringent test of the leamning method.
The hidden elements (elements 1—4) must tune to certain
constellations of the stimulus components in order to disrupt
misleading generalizations. There are several ways that this
can be done, and the network comes up with different
solutions in different sequences of trials.” This task also illus-
trates some of the computational sophistication that can
arise with the formation of highly nonlinear functions.
Linear threshold functions can exhibit only a very restricted
form of context sensitivity: contextual information can bias
activation one way or the other, effectively raising or lower-
ing the threshold. Nonlinear context sensitivity, on the other
hand, can result in the complete alteration of behavior as a
function of contextual information. The exclusive-or task of
the preceding example illustrates this in the simplest form,
where one stimulus component can be regarded as switching
the processing of the second stimulus component between
the identity and inversion functions. The multiplexer illus-
trates a more extreme form by which the contextual infor-
mation provided over the address pathways completely alters
the set of signals to which the principal element is sensitive.
A similar phenomenon appears to occur with the so-called
“place cells” in hippocampus that seem to represent differ-
ent places depending on the context (Kubie and Rank 1983).

Discussion of the simulation results

These simulation experiments suggest that layered networks
of Ap_p elements can reliably learn nonlinear associative
mappings without being explicitly instructed how to imple-
ment them. However, these results also suggest that the pro-
cess may take a considerable amount of time. It is difficult
to evaluate the learning rate of 45 _p networks without
comparing their performance with that of other learning
algorithms, and we have not yet systematically done this.
Preliminary comparison with unsophisticated random search
through the space of all combinations of weight values
indicates that A, _ p networks are vastly faster, but much
more work needs to be done before we can knowledgeably
comment on the efficiency of Ag_p networks. It must be
remembered, however, that the dimensionality of this search
space is relatively large even for the small networks simulat-
ed here; for example, the weight space for the multiplexer

“For Ag_p elements that use the logistic distribution {Eq. (1),
the same effect can be achieved by either varying p or 7 increas-
ing p has the same effect as decreasing T~

300600 350800

network has 39 dimensions, Still, leaming times may become
exceedingly long for large networks.

There are several factors that bear on the issue of leam-
ing rate. First, in the simulations described here, each se-
quence of trials begins with all the weights set to zero so
that the required mapping has to be learned from scratch.
This is merely a methodological convenience and does not
imply that we are philosphically inclined toward a rabuls
rasa view of learning and intelligence. On the contrary, it
is likely that large, deep networks are only capable of leam-
ing sufficiently quickly if they begin with initial pathways
and weight values that place the network's behavior “in the
ballpark.” Moreover, it should not be overlooked that the
learning methods described here also permit networks to re-
cover from damage. In this case, the starting point for adap-
tive reorganization will depend on the extent of the damage.

A second factor concems the tradeoff between speed and
accuracy that is inherent in any type of stochastic search.
Although the networks are able to improve performance
with any admissible parameter values (0 < A < 1, p > 0),
these values effect the speed of learning and the degree of
performance eventually achieved. The simulation in the
Section “‘A self-interested adaptive element” (Fig. 3) shows
the tradeoff for various values of A for asingle A5 _, ele.
ment, and similar results appear when networks are simulat-
ed. The parameter p has a more complex effect on perform-
ance but also participates in this tradeoff.'® In the next
section, theoretical results for a single A, _ p element are
described which we have not rigorously extended to net-
works of A, _ p elements; nevertheless, our network simula-
tions suggest the following. If one is willing to accept the
network getting stuck at suboptimal performance levels,
then learning can be made much more rapid. On the other
hand, if one demands eventual near-optimal performance,
then one has to be willing to wait for it. The important
point, however, is that unlike the situation for networks with
a single adaptive layer, near-optimal performance will always
be achieved (we must emphasize again that this has not been
proven). A compromise between these extremes might be ob-
tainable by systematically varying the parameters as leaming
proceeds — for example, by starting with A near one and de-
creasing it as performance improves, but we have not yet
experimented with this.

A related issue concemns the manner in which a network’'s
performance approaches a desired level. If a large network
facing a difficult learning problem can maintain a high level
of performance while the leaming process is underway, then
a long wait for an optimal solution may not be such a prob-
lem. Networks of A 5 _ p elements appear to have this proper-
ty if their architectures are appropriate. For example, in
solving the exclusive-or task described above, the network
quickly solved the easy part of the problem by learning to



tespond correctly to three of the four cases. Considerably
more trials were required to obtain the complete solution,
but during this period the network’s performance remained
relatively high (Fig. 7c). Behavior like this is characteristic
of networks which do not require long chains of elements
to be formed to allow environmentally supplied stimuli
to influence the visible elements. This suggests that effective
network architectures might be like that of Figures 6 and 9,
with hidden elements forming auxiliary side networks rather
than being strictly interposed between layers. This architec-
ture is also plausible from an evolutionary perspective if we
imagine that additional network structure is added around
existing functional structure rather than being inserted
into it.

Theoretical analysis

In this section we provide a theoretical justification for the
reliable performance of the Az _p element as an adaptive
network component. By first looking carefully at the non-
associative aspects of the task faced by a hidden network
element and then at the leaming capabilities of a single
Ag_p element, one can gain some understanding of the
learning process. In the next section, we relate the A _p
element to adaptive elements developed in the past and
gain some understanding why networks of those elements
are not able to perform reliably in similar tasks. The nota-
tion used in this section is that developed in the Section
*“A self-interested adaptive element™.

Contingency space

To help understand the nonassociative aspects of the task
faced by a hidden element we borrow the notion of con-
tingency space from animal learning theorists (see Staddon
1984). Recall that an associative reinforcement learning task
for a learning system with two actions +1 and -1, as de-
scribed in A self-interested adaptive element™, is character-
ized by two reward probabilities, d(x, +1) and d(x, 1), for
each input pattem x in X. We can therefore represent the
task by a set of points, one of each x, plotted in a contin-
gency space whose coordinates are respectively the reward
probability given action +I in the presence of x and the re-
ward probability given action —1 in the presence of x (Fig.
11). A single point corresponds to one of the component
nonassociative reinforcement learning tasks that comprise
the associative task. Various regions of the contingency
space correspond to nonassociative reinforcement learning
tasks that pose different kinds of problems for learning
algorithms,

Letting the abscissa be the reward probability for action
+1, the diagonal line of slope 1 divides the space into two
triangular regions, the lower-right one corresponding to
(nonassociative) reinforcement leaming tasks in which action
+1 is the optimal action, and the upper-left one correspond-
ing to tasks in which action —1 is the optimal action. With-
out loss of generality, let us assume that action +1 is optimal
and focus only on the lower.right triangle, ie., the set of
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Fig. 11. Contingency space. Each point in contingency space corre-
sponds to a nonassociative reintorcement leaming task. Tasks falling
in the dilferent labelled regions present different types of difficulties
for a learning aslgorithm: see text tor details

points with d(x, +1) > d(x, =1). All of the regions to be de-
lineated have obvious counterparts in the upper-right triangle.
Figure 11 shows three numbered regions. Region | consists
of all those points with d(x, +1) > 0.5 and d(x, —1) < 0.5.
We consider this to be the “easy™ region since the environ-
ment usually rewards the optimal action and usually penalizes
the non-optimal one. Notice that the set of tasks in which
the reward probabilities for the two actions sum to one lies
completely within the easy region. Region 2 consists of those
points with d(x, +1) > 0.5 and d(x, —1) > 0.5. These tasks
are much more difficult because the environment usually
rewards both actions, and the learning algorithm must figure
out, so to speak, which of two good actions is better — “'the
greater of two goods.” Region 3 consists of points corre-
sponding to tasks that are difficult for the opposite reason:
the learning system must figure out which of two bad actions
is better — *‘the lesser of two evils.”

Tasks that fall in regions 2 and 3 present special difficul-
ties because the predominant estimate for the desired action,
i.e.. the more frequent value of r(¢) y(¢). depends on the
action probabilities of the learning system. For tasks in
region 2, for example, an action can more frequently appear
to be the desired action just because it is being performed
more frequently than the other action; for tasks in region 3,
an action can more trequently appear to be the desired
action just because it is being performed less frequently
than the other action. For tasks in the easy region, on the
other hand, the predominant estimate for the desired action
is independent of the leaming system’s action probabilities,
and learning algorithms can be simpler. These observations,
which are shown mathematically by Barto and Anandan
(1985), provide one way of understanding the role of the
term £ { y(¢)Is(¢)} used in the A5 _p algorithm [Eq. (2)].
This term adjusts the magnitude of weight changes to coun-
teract any advantage an action may appear to have that is
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actually due to its being performed more (or less) frequently
than the other action.'®

The point of this analysis is that the task faced by a hid-
den element in a network will not generally fall in the
easy region of contingeny space for all of its input patterns.
For example, in the exclusive-or task described above, before
trial 1400. the hidden element. e, is usually penalized no
matter what it does when input pattern x() is present. This
occurs because the visible element is reliably acting incorrect-
ly in this case, having incorrectly generalized from its ex-
periences with the other three pattems. Thus, for this input
pattemn, the task of e, falls in region 3 of contingency space.
2 hard region. In fact, the task faced by the visible element,
e,, also falls in region 3 for this input pattem. As all of the
weights of the network change, the point representing the
task of e, given x(!) moves about contingency space but
generally remains in region 3. At the same time, the task of
e, moves about contingency space but generally also re-
mains in region 3. Both elements need to be able to make
progress under these circumstances. As we see next, the
Ap _p clement is able to solve associative reinforcement
learning problems whose component problems fall any-
where within contingency space.

The Ag _ p convergence theorem

The leaming capabilities of the A _ p element when faced
with an associative reinforcement learning task are sum-
marized by a theorem proved by Barto and Anandan (1985).
Here we informally describe this result. Several conditions
on both the task and the A, _p element are sutficient to
ensure the convergence result. The set X of stimulus patterns
used for training must be a linearly independent set of vectors
(i.e.. no vector in the set can be a linear combination of any
of the others). Further, each stimulus pattern in X must
have a nonzero probability of being presented on any trial,
which implies that in any infinite sequence of trials, each
pattern in X will (almost surely) occur infinitely often.
Each random number n(¢) used by the A _ » element must
be selected according to a (cumulative) distribution function
that is continuous and strictly monotonically increasing. The
major implication of this condition is that any increase (de-
crease) in the weighted sum s(r) always increases (decreases)
the probability that the element emits action +1;there is no
ceiling effect. This excludes the case in which the n(¢) are
selected according to any uniform distribution, including the
deterministic case in which all the n() equal the same con-
stant. It is satisfied by the logistic distribution we used in the
simulations. Finally, the parameter p in Eq. (2) must de-
crease at a certain rate with successive trials. This is a stand-
ard condition for the convergence of certain types of pattem

16 Another method for coping with this difficulty is to use another
set of weights to construct an estimate of the reward probabili!y
for each input pattern. Weight updates are then based on the dis-
crepancy between this estimate and the observed reward, Th_e effect
of this “reinforcement comparison mechanism™ is to adjust the
effective reinforcement so that the contingency appears to be in
the easy region of contingency space. Sutton (1984) extensively
discusses this approach

“1“Eyery infinite sequence” is not quite accurate. The random pro-
cess almost surely converges, meaning that the probability of seeing
an infinite sequence of trials for which the result does not hold is
zero

classification algorithms, but it is often ignored in practice
since learning is greatly slowed by decreasing p and the algo-
rithms tend to behave well with it held constant. Although
decreasing p is required for the convergence result to be stat-
ed, we held it constant in all the simulations presented. See
Barto and Anandan (1985) for the details of this condition.
No restriction of any kind is placed on the reward prob-
abilities d(x, +1) and d(x, ~1); the component tasks can
therefore fall in any region of contingency space.

Under these conditions, the following convergence result
holds for an A, _ p element in an associative reinforcement
learning task. For any initial weight values and any value of
A, 0 < A < 1, every infinite sequence of leaming trials causes
the Ap _p element to converge'” to a weight vector that
causes the correct action to be produced in response to each
stimulus pattern in X with probability greater than 0.5,
i.e., the correct action will be more likely than the incorrect
one. Further — and this is the important part — the smaller
A is, the larger will be the probability of producing the cor-
rect action in response to each stimulus pattern in X when
the process converges: in fact, as A approaches zero, the
probability of each correct action approaches one. By the
correct action for an input pattern x we mean the action
y* such that d(x, y*) =max |d(x, +1).d(x, ~1)] . Recall
that A determines the relative effectiveness of reward and
penalty in the learning process. As A approaches zero, the
process becomes more asymmetrical, with the effect of .
penalty approaching zero. Interestingly, the proof by Barto
and Anandan (1985) does not go through, and the result
appears not to hold, when A actually equals zero.

One of the most important implications of this result is
that the A5 _p element can improve its performance in
a wide range of associative reinforcement leaming tasks
without the necessity of using different values of the para-
meters p and A for tasks involving contingencies in different
regions of contingency space. Therefore learning is possible
when there is no a priori-knowledge about the contingencies
— a property critical to the performance of A5 _p elements
that are embedded in networks. Unfortunately, however, the
situation is not quite so straightforward. For given parameter
values, the asymptotic performance level is only guaranteed
to be better than chance. How much better than chance de-’
pends not only on A, as described above, but also on the
environmental contingencies. The asymptotic performance
level with a fixed value of A decreases as contingencies move
deeper into the hard regions of contingency space (i.e., closer
to the lowerleft or upper-right corners). This suggests that
one should set A very small so that adequate performance
will be attained in all foreseeable circumstances. Unfortun.
ately, however, learning rate decreases as A decreases. So we
are faced with a tradeoff unless methods are devised for vary-
ing A as leamning proceeds.

The most serious limitation of this result is the require-
ment that the stimulus vectors form a linearly independent
set. Although this is a much weaker condition than orthog-
onality of the stimulus vectors, it implies that there can be at
most n different patterns in the training set, where n is the
number of input pathways of the adaptive element (exclud-
ing the reinforcement pathway). Does this mean that we have
to make sure that no linear dependencies ever exist among
the input vectors? Fortunately, the answer seems to be no.
Linear independence of the training vectors ensures that



any associative mapping from X to action probabilities can
be implemented by the adaptive element.'® In particular,
there exist weight values that yield performance as close to
optimal as desired. However, although it has not yet been
proven, when X is not a linearly independent set, it is likely
that the A, _ p element is able to find the weight values that
yield some sort of best approximation to the optimal per-
formance that can be attained by adjusting the weights.
Algorithms capable of doing this for problems restricted to
the “easy" region of contingency space are well-known (such
as the Widrow/Hoff rule described in the Section *‘Relation-
ship of the A _p element to other adaptive elements”),
where best approximation means one yielding the least mean-
square error. We are currently working toward extending the
Ap _ p convergence theorem in this direction.

We know of no other algorithm that is provably capable
of this combination of decision-under-uncertainty and asso-
ciative leamning. Other algorithms, such as those using the
“reinforcement comparison” approach developed by Sutton
(1984), may possess the required degree of robustness, and
we are in the process of systematically comparing their per-
formance in networks with that of the A5 _ p element.

Relationship of the Ag _ p element to other adaptive elements

The Ap, _ p algorithm was devised by extending several well-
known algorithms and is therefore closely related to them.
By comparing adaptive elements implementing these algo-
rithms with the A _ p element, we can place the A5 _ p ele-
ment in its proper historical and theoretical perspective and
gain some understanding about why the other elements are
not able to learn as hidden elements of networks. In addition
to the algorithms discussed here. many others have been pro-
posed in the literature on adaptive pattem classification. and
it is impossible to treat them all. We have chosen examples
that are the most well-known, that have been presented as
_neuron-like adaptive elements, and that represent major clas-
ses of algorithms. Some of the adaptive elements described
here are also described by Sutton and Barto (1981), and
only what is necessary to make the presentation self-contain-
ed will be repeated. All of the elements to be described use
the notation introduced in Figure 1.

Correlational elements

A simple rule for updating the connection weights is
Awi(t)=py(t)x, (1), - )

for each i, 1 < i < n, where p > Qis a constant determining
the rate of change of w;. This rule adjusts a weight according
to the correlation between the presynaptic signal, x,(¢), and
the postsynaptic signal, y(¢). It.is perhaps the most literal
mathematical interpretation of Hebb's postulated learning
rule (Hebb 1949), and has been used extensively, with
a variety of modifications, in theoretical adaptive network
studies. For example, units employing this rule have been
used in associative memory networks that have a number
of interesting properties (Anderson et al. 1977; Hinton and
Anderson 1981; Kohonen 1977).

% Of course. this does not mean that any associative mapping from
&" to action probabilities can be implemented by a single element
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Adaptive elements using variants of this rule are suited
to a type of learning that resembles classical conditioning.
The unconditioned stimulus (US) arrives at the unit via
a pathway that has a large positive weight. The US therefore
causes the unit to fire (thereby contributing to the uncon-
ditioned response, or UR). Any input pathway that is active
when the US-UR occurs therefore has its weight increased,
making a signal arriving on that path (a conditioned stim-
ulus, or CS) more efficacious in firing the unit (and there-
by contributing to the production of the conditioned re-
sponse, or CR). Although this pure-contiguity view of
classical conditioning is not accurate, the rule can be modi-
fied in a number of ways to make it a better model of clas-
sical conditioning as discussed extensively by Sutton and
Barto (1981), who also discuss the necessity to add addi-
tional mechanisms to obtain a stable leaming procedure.
For our purposes, it is important to note that although there
is no specialized reinforcement pathway, a given pathway, or
a set of pathways, is initially provided with a weight of large
magnitude, often unaffected by the learning rule, that acts
not only as a built-in reflex pathway but also as a training
pathway. A signal arriving via this pathway forces the unit’s
activity to be high or low. Equation (4) changes the weights
of the simultaneously active input pathways so that the
unit’s output will tend to be driven correspondingly high
or low when those active input pathways are active again in
the future, even if the training pathways are not active.

This type of learning, which is performed better in many
respects by more sophisticated leamning rules, is a form of
supervised leaming in which the element’s environment
specifies desired responses. Although the training signals are
often regarded as a form of reinforcement (just as the US in
classical conditioning is regarded as a reinforcer), this type
of element is in no sense capable of maximizing reward fre-
quency, or of controlling any aspect of its input, and we do
not regard it as a self-interested element.

Widrow/Hoff element

Widrow and Hoff (1960) described an adaptive element that
they called an “adaline™, for adaptive linear element (see
also Widrow 1962). Its response is determined by comparing
the weighted sum of the inputs to a fixed threshold:

+1,if s(r) > 0;
YO _Lifs) < o ©)
and the weights are updated as follows:
Aw(r) = p [z2(r) — s x; (), (6)

for each i, | < i < n. Here, z(¢) is the value of a specialized
training signal giving the desired response of the unit. This
rule is suitable for supervised learning tasks as described
for correlational rules except that it is designed to adjust the
weights in order to match each z(¢) and s(¢) as closely as pos-
sible, that is, to reduce the error, or discrepancy, e(t) = z(r)
— s(¢). When s(¢) is too low, e(t) is positive, and Eq. (6)
increases (decreases) the weights of pathways carrying posi-
tive (negative) signals, x;(¢). This causes s to be larger when
a similar input pattern appears in the future. When s(¢) is too
high, e(r) is negative. and the same thing happens mutatis
mutandis. This process is called “error-correction.”
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There is a well-developed theory about this learning rule,
some of which is discussed in Sutton and Barto (1981),
where it is also pointed out that it is essentially the same as
Rescorla and Wagner's (1972) model of classical condition-
ing. It is capable of forming desired associative mappings
under a broader set of conditions then are simpler correla-
tional rules. However, we still do not consider this adaptive
element to be self-interested since it is not able to learn to
control any aspect of its input. Its goal, as it were, is simply
to produce a match between its actions and the training
signal.

Perceptron element

Although Rosenblatt (1962) studied many leaming rules for
his “perceptron”, the rule that has come to be called the
perceptron learning rule is an error-correction procedure
very similar to the Widrow/Hoff rule. Element responses are
produced according to Eq. (5). and weights are updated by
the following rule:

Aw(r) = p (2(r) = y ()} x;(0). (7)
for each i. 1 < i < n. where z(¢) is +1 or —1."* Here the error
is the difference between the desired output and the actual
output, y(r), rather than the weighted sum, s(¢), as in Eq. (6).
No weight changes are made when the response is correct.
Despite their similarities, the Widrow/Hoff and perceptron
rules have significant differences in their convergence pro-
perties (see Duda and Hart 1973; Minsky and Papert 1969)
but these need not concern us here.

Although there is considerable controversy about the
relationship between classical and instrumental conditioning
(see, for example, Mackintosh 1983), there seems to be no
disagreement that error-correction leaming rules, such as the
Widrow/Hoff and perceptron rules, are not designed for
learning in paradigms involving response contingencies.
Nevertheless, we have seen descriptions of these rules, and
the paradigms in which they are intended to operate, that are
very misleading in this regard. Sometimes the discrepancy,
or error, e(t) = z(t) — s(¢) for the Widrow/Hoff rule and
e(r) = z(t) — y(¢) for the perceptron rule, is regarded as be-
ing computed by the learning system’s environment rather
than by the system itself. In this case, the training signal is
this error signal, which is response-contingent feedback.
Consequently, the term “‘trial-and-error learning”. generally
treated as roughly synonymous with instrumental leaming,
has been applied to this process. This is a very misleading
view because the error signal provides a different kind of
information than does a reward/penalty signal. Considering
the perceptron rule, for example, e(f) = +1 tells the element
that it should have fired when it did not, and e(r) = —1 tells
it that it should not have fired when it did. On the other
hand. a reward/penalty signal, such as r(¢) used by the
Ap _p element, evaluates the action performed without
directly specifying what action would have been correct.
For example, r(r) =-+1 tells the Ap_p element that the
action just performed, whatever it was, should be performed

¥ Usually this rule is defined with a threshold function that yields
the values O and | instead of ~1 and +1, and z(¢) = 0 or 1, This
version is the same as ours if its p is twice ours

more frequently in the presence of the cumrent stimulus, It
does not tell it that the action should have been +1. Now in
the case of just two possible actions, the element can com-
bine a reward/penalty signal with knowledge of its action to
deduce an error signal (e.g., if it just performed action -1
and received a penalty r(¢f) = —I1, then it should have per-
formed action +1, so the error is +1). This is the basis of the
selective bootstrap element and the reinforcement leaming
perceptron described below.

Associative search element

The author and colleagues described an adaptive element in
some previous publications that is mentioned here in order
to make the connection to that earlier work (Anderson
1982: Barto et al. 1981 Barto and Sutton 1981b). In addi-
tion, this element, which we call the “associative search
element™, is perhaps the simplest extension of the correla-
tional rule [Eq. (4)] which makes it applicable to associative
reinforcement learning. An explanation of this element serves
to relate the basic idea behind all of the reinforcement leam-
ing rules to the Hebbian postulate. The output of the associa-
tive search element is computed in the same way that it is
computed by an 4 5 _ p element: the weighted sum of the in-
put signals is compared with a random threshold according
to Eq. (1). The weights are updated according to the follow-
ing rule:

Aw(t)=prit) yit) x(¢), @®

for each i, 1 < i < n, where r(r)is +1 (reward) or —1 (penal-
ty). This is just the correlational rule [Eq. (4)] with an extra
factor that modulates the process according to reinforce-
ment. In previous studies we were careful to point out that
there is a necessary time delay between an action and the
contingent reinforcement. In the simplest case in which the
delay is always a single time step, the rule appears as follows:

Aw(t)=pr(t) y(t — 1) x;(z - 1).

Since in the present discussion we are not addressing real-
time issues, we ignore any delay occurring within a trial, and
Eq. (8) is adequate if it is understood that r(t) is the re-
inforcement contingent upon action y(r). )

This rule makes clear the three factors minimally required
for associative reinforcement learning: the stimulus signal. x:
the action produced in its presence, y; and the consequent
evaluation, r. One can view the learning process as one in
which basic yx correlations are formed but held in abeyance
until the relevant reinforcement occurs,®® at which time
they are “fixed™ in a manner that depends on the type of re-
inforcement received. The adaptive element proposed by
Klopf (1972), which he called the “heterostat™, first intro-
duced this idea to us. The A5 _ p element incorporates this
same principle but has as a basis a rule like the Windrow/Hoft
or perceptron rule instead ot the simpler correlational rule.
The associative search element is not capable of performing
well when facing tasks with contingencies falling in the hard
regions of contingency space, and it is not able to discrim-
inate among similar stimulus patterns in the way that the
Ap_p element can. lts performance improves in both of

1 Again, we are purposefully ignoring the problem of determining
when the relevant reinforcement occurs (the *“temporal credit-
assignment problem®). See Barto et al. (1983) and Sutton (1984)



these respects when the reinforcement it receives is prepro-
cessed by a mechanism that compares the actual reinforce-
ment with that “expected” when acting in the presence of
similar stimulus pattems. This approach is developed exten-
sively by Sutton (1984).

Selective bootstrap element

Widrow et al. (1973) described an extension of the Widrow/
Hoff algorithm that is, to the best of my knowledge, the
algorithm in the literature most closely related tothe A5 _p
algorithm, Whereas the Widrow/Hoff and perceptron
elements receive a training signal, z(¢), that directly specifies
the desired response at trial ¢, the selective bootstrap element
receives a reward/penalty signal, r(r), as does the A5 _ p ele-
ment. The selective bootstrap element uses the deterministic
thresholding given by Eq. (5) to determine its output. It uses
the following equation to update its weights:

Aw(t) = p [r() y(£) = s()] x;(4). (9

for each i, 1 < i < n, where r(r) is +1 (reward) or —1 (penal-
ty). This element therefore differs from the A, _ p element
in that its output is a deterministic function of s(f) and
s(t) is used instead of £ {y(2)Is(r)} in the weight update
equation. Additionally, it is 2 symmetric rule that changes
weights by equal magnitudes upon reward and penalty, al-
though Widrow et al. (1973) did discuss an asymmetric ver-
sion. Loosely speaking, this element is a deterministic and
symmetric version of the Az _p element, and its behavior
can be understood in similar terms.?

It is instructive to discuss the reason that Widrow et al,
(1973) chose the term *“‘selective bootstrap adaptation” to
describe this learning process. Their starting point was the
supervised leaming paradigm in which the training signal,
z(t), specified desired responses, but they supposed that
this training signal was not available. They called learning
by means of the Widrow/Hoff rule with z(¢) = y(r) *“positive
bootstrap adaptation™. It updates weights as if the output
actually produced was in fact the desired response — boot-
strapping, as it were, based on its own actions. On the other
hand, they called learning by means of the Widrow/Hoff
rule with z(f) = —p(¢) “negative bootstrap adaptation”. In
this case weights are updated as if the out not produced was
the desired response. Finally, “selective bootstrap adapta-
tion” means switching from positive to negative bootstrap
adaptation, or vice versa, depending on a signal from the
environment, r(r), indicating reward or penalty. Equation
(9) can then be seen as switching the Widrow/Hoff rule
[Eq. (6)] between its positive and negative bootstrapping
modes. The A, _p element can be given a similar interpre-
tation.

Although the selective bootstrap element and the 4, _,
element are similar, they have very different learning capabil.
ities. Whereas the A, _ p element can learn effectively for
response contingencies that fall anywhere within contingency
space (Fig. 11), the selective bootstrap element is only able
to learn reliably when facing response contingencies that fall
within the easy region of contingency space (region 1).

31t is not literally the deterministic specialization of the Ap_ p ele-
ment since if the random numbers in Eq. (1) are all equal to zero,
then £ { y(£)Is(1)} = y(r) rather than s(¢) as in Eq. (9)
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Barto and Anandan (1985) describe simulations that
compare the performance of these elements for various
types of contingencies. The selective bootstrap element can
learn much faster than the 4, _ p element for easy tasks, but
either oscillates or sometimes converges to the wrong action
in hard tasks. This severely limits the utility of the selective
bootstrap element as an adaptive network component.

Reinforcement learning perceptron

Although this adaptive element has never been singled out as
being different in any significant way from the perceptron
element described above, it is mentioned here because it is
a special case of the A5 _p element. Note that the response
mapping rule of the A, _, element [Eq. (1)] reduces to that
of the perceptron element [Eq. (5)] if each random variable
n(t) in Eq. (1) is always zero. In this case, the expected out-
put given s{¢) is just the actual output y(r), so that if we let
A =1 the A _p learning rule given by Eq. (2) becomes

Awy(t) = p (1) y () — y(£)] x (D),

foreach i, 1 < i < n, where r(r)is +1 (reward) or —1 (penal-
ty). This is just the perceptron rule [Eq. (7)] modified to
accept reward/penalty signals rather than desired responses.??
The distinction between this version of the perceptron
rule and that given above in the. Subsection “Perceptron
element” is so slight that several authors have described the
reinforcement learning version without noting its difference
from Rosenblatt’s original form (e.g., Minsky and Papert
1969). Unfortunately, this special case of the A5 _p algo-
rithm does not satisfy the conditions required for the 4 R-P
convergence theorem since the noise distribution function is
not continuous and strictly monotonically increasing (it is
a step function). It performs very poorly in tasks that fall
anywhere in contingency space except the upper left and
lower right comers that correspond to deteministic tasks.

Learning automata

Although learning automata are not typically cast as neuron-
like adaptive elements, a number of interesting connections
can be pointed out by relating the 45 _ , element, as well as
some of the other elements described above, to various
classes of learning automata (Narendra and Thathachar 1974).
Leamning automata are designed for nonassociative versions
of the associative reinforcement leaming task that we de-
scribed in the Section “A self-interested adaptive element".
Consequently their theory addresses the problem of decision
making under uncertainty but not the problem of forming
optimal associative mappings. Specifically, the associative
reinforcement learning task reduces to the task focussed
upon by learning automaton theorists if the set X of possible
stimulus patterns contains just a single pattern. This means
that the learning system always senses the same input pattem
and is not required to form any discriminations. This kind of
task corresponds to a single point in contingency space.

The class of leaming automata relevant here consists of

**For the case in which the Ap,_ p element uses the logistic distribu-
tion [Eq. (3)|. the Ag_ » element becomes the perceptron element
when T is zero
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*variable-structure stochastic learning automata, which can
be described as methods for updating action probabilities.
Suppose that on each trial the automaton can perform one
action from the set p() ... y"I_ At each trial ¢, the
automaton selects an action y(f) according to a probability
vector (p{V), ..., pt™), where p® = Pr{y(r) =pyB}, 1 <
< m. These automata implement a common-sense notion of
reinforcement learning: if action y is chosen and the en-
vironment's feedback indicates reward, then p\) is increased
and the probabilites of the other actions are decreased;
whereas if the feedback indicates penalty, then p( is de-
creased and the probabilities of the other actions are adjust-
ed. Many methods that have been studied are similar to the
following linear reward-penalty (Lg_ p) method, which was
proposed for the case of two actions by Bush and Mosteller
(1951a):

If y(r) = y®) and the resultant evaluation is reward (i.e.,
r(t) = +1), then

P2, =pd +a (1 -p")
P, =1 —a)p¥ j #i.

Ify(r) =y and r(r) = —~1 (penalty), then
PO =1 - B)p"

o0, =L +(1- 9o .j i,

where 0 < @, f# < 1. When a = §, the algorithm is the sym-
metric L, _p algorithm, and when § = 0, it is called the
linear reward-inaction (L 5 _ ;) algorithm.

Barto and Anandan (1985) show that the A5 _p algo-
rithm reduces to the two-action version of this algorithm
(m = 2) if the distribution function for the noisy threshold
is a uniform distribution (i.e., each random value n(¢) in
Eq. (1) is equally likely to fall anywhere between, say, -1
and +1), and the input pattern is held constant (and non-
zero) over trials. If the distribution function is not uniform,
the A, _p algorithm similarly reduces to a nonlinear learn-
ing automaton algorithm. This means thatan A5 _ , element
that receives, in addition to reinforcement input, just a con-
stant threshold input, and adjusts just its threshold weight,
is an example of a stochastic learning automaton. This is
in fact how the A _p algorithm was designed. and the con.
vergence theorem described in the Section “Theoretical
analysis” is an extension of an existing theorem due to
Lakshmivarahan (1981) for a class of stochastic learning
automaton algorithms.

The selective bootstrap element and the reinforcement
learning perceptron also reduce to learning automata when
their input patterns are held constant. Since the resulting
learning automata are deterministic, they have well-known
difficulties when facing contingencies in the hard parts of
contingency space. The reinforcement learning perceptron in
fact reduces to the “win-stay/lose-shift” strategy (also known
as the two-state Tsetlin automaton) which performs better
than chance, but far from optimally, under all nondetermin.
istic contingencies.

A final interesting connection is that the symmetric
Agp_p algorithm (A = 1) will “probability match” when

facing contingencies in which the reward probabilities for its
two actions sum to one for each stimulus pattern. This
means, for example, that if the reward probabilities for per-
forming actions +1 and —1 are respecuvely 0.7 and 0.3, then
the A, _p element will eventually perform action +1 and —1
with respective probabilities 0.7 and 0.3. This yields an over-
all reward probability that is better than chance but far from
optimal. Probability matching was extensively studied by
mathematical psychologists (see the review by Meyers 1976).

Boltzmann machines

Although we cannot point out direct relationships between
learning by networks of A, _p elements and learning by
the “Boltizmann machine” of Hinton et al. (Ackley €t al.
1985: Hinton and Sejnowski 1983), this approach is of suf-
ficient interest in the context of stochastic cooperativity
that we briefly discuss it. A similar approach has been inde-
pendently developed by Smolensky (1983). A Boltzmann
machine is a network of stochastic linear threshold units,
each having an input/output function identical to that of an
Ap _p clement using the logistic distribution {Eq. (1) and
(3)]. Unlike the networks considered here, these networks
are symmetrically connected, meaning that if unit A in-
fluences unit B, then unit B influences unit A in exactly the
same way. This assumption permits the application of math.
ematical results from statistical themaodynamics to deter-
mine the relative probability of each pattern of activation
at equilibrium. If one regards the interconnection weights
as specifying constraints that are to hold between the activ-
ities of pairs of units, then at equilibrium the probability of
an activity pattern is higher to the extent that it simultan.
eously satisfies all of these constraints. There is an analogy
between the degree the constraints are satisfied and the
energy of a physical system — the system evolves so as to
spend a higher proportion of time in low energy states. The
computational temperature of the system, T, can be mani-
pulated to affect both the time it takes the system to reach

. equilibrium and the .equilibrium probabilities of activity

pattemns. This connection between statistical physics and net-
works of neuron-like elements is due to Hopfield (1982),
with an earlier but less specific connection being made by
Cragg and Temperley (1954). The computational process
of obtaining equilibrium probabilities is described by Kirk-
patrick et al. (1983) and by Geman and Geman (1984).

The leaming algorithm proposed by Hinton and Sejnowski
(1983) is of interest here because it addresses the problem
of assigning credit to the hidden elements. The training
paradigm is similar to the supervised-learning paradim dis-
cussed above for the Widrow/Hoff and perceptron elements.
Here, however, only the visible elements of the network are
directly told what they should be doing. It turns out that the
gradient of overall network performance with respect to any
weight, even an interior weight, can be determined using only
the behavior of the two elements the weight connects provid-
ed this behavior is measured when the network is operating
according to the equilibdum probability distribution. The
learning procedure then changes weights according to this
gradient by a stochastic hill-climbing method. Although it
can be proved that the gradient of the global performance
index can be determined locally in this manner, it is not
necessarily true that the stochastic hill-climbing procedure is



always capable of avoiding false peaks. Nevertheless, simula-
tion experiments show that the process does tend to work,
but as in the case of networks of A5 _ p elements, there are
many unanswered questions about the amount of time need-
ed for learning and how it increases as problems become
harder. See Ackley et al. (1985) for the most complete dis-
cussion of this learning process.

Despite some superficial similarities, networks of A5 _ p
elements and Boltzmann machines are quite different. First,
the units of Boltzmann machines are not self-interested
components that learn to cooperate in the sense of game
theory. Second, the networks of Ag_p elements we have
simulated so far have all been layered networks without re-
current connections, whereas the Boltzmann learning pro-
cedure is restricted to symmetrically connectioned, hence
totally recurrent, networks. In a layered network the entire
stage corresponding to the running of a Boltzmann network
or Harmony system (Smolenski 1983) to equilibrium appears
in a degenerate form: it is just the process of evaluating the
inputfoutput function realized by the network, and no
iterative relaxation procedure is required. Hence, layered net-
works do not solve subtle constraint satisfaction problems.
On the other hand, once a layered network has learned, its
performance in computing this function is essentially in-
stantaneous. We have not yet decided on the best way to
extend our approach to the recurrent case, but we do not
think it is inherently limited to nonrecurrent networks.
Future research will concern the case of recurrent but
asymmetric networks. ‘

As the preceding comparisons show, the A5 _ p element
is closely related to a number of existing adaptive elements
and learning algorithms. Under one set of restrictions, it
specializes to more conventional deterministic adaptive
elements, such as those embodying the perceptron algorithm,
that are designed to form linear associative mappings when
explicit and reliable training information is available. Through
this direction of specialization, the A5 _p element makes
contact with models of animal behavior in classical condi-
tioning such as the Rescorla/Wagner model. Under another
set of restrictions, the A _ o element specializes to stochast-
ic learning algorithms that are capable of improving their
performance under response contingencies that are disguised
by high degrees of noise. Through this connection, the A, _p
element makes contact with both the stochastic automaton
algorithms developed by engineers and the stochastic learning
models of mathematical psychology. Consequently, the
Ap _p element lies in the intersection of important classes
of algorithms developed within theoretical traditions that
have remained largely separate. Although we think that these
theoretical connections are interesting for their own sake,
our major interest in Az _ p elements, and similar elements,
is a result of their ability to learn to cooperate with one an-
other as components of multilayered adaptive networks. The
various theoretical thsreads brought together in the Ay _,
element complement one another in ways critical to this cap-
ability.

These properties of the A, _p element suggest that it
may be a good candidate for careful empirical investigation
as a model of associative Jearning at the cellular level. From
a broad perspective, the Az _ p mechanism is Hebbian since
it bases synaptic change on both pre- and postsynaptic sig-
nals. Consequently, the empirical support, or lack of it, for
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Hebbian synapses is relevant to the status of the A5 _ p ele-
ment as a neuronal model. Viana di Prisco (1984) provides a
good review of the current state of the evidence for Hebbian
synapses, and the overall picture is far from compelling.
However, the 4 5 _ p model would suggest that the conditions
for synaptic change in associative learning are considerably
more stringent than those required by the Hebbian postulate.
That the conditions for synaptic change in associative learn-
ing are more stringent than those suggested by the Hebbian
postulate may provide an explanation for the relative dif-
ficulty in obtaining synaptic changes with the usual experi-
mental manipulations designed to test the Hebbian postulate.

On the other hand, it may not be correct to associate an
Ag _p element with a neuron in the manner suggested by
Figure 1. For example, the influence of postsynaptic activity
on synaptic modification required by the A5 _p algorithm
could be mediated by pathways extemnal to the neuron that
carry information about post-synaptic activity to the pre-
synaptic terminals. This implementation of the A5 _p algo-
rithm would be similar to one suggested by Sutton and Barto
(1981) for a different algorithm. Alternatively, the processes
required by the A _ p algorithm could occur at an organiza-
tional grain finer than entire neurons, for example, at the
level of groups of adjacent synapses. These possibilities sug-
gest that although the 4 5 _ p element is “neuron-like” in the
tradition of the adaptive elements described in this section,
its specific features may not map in a literal way onto actual
neurons. We would hope, however, that the principles of
learning embodied in the 45 _p algorithm would survive
various interpretations,

Discussion

Cooperativity in neural networks undoubtedly takes many
forms, some of which are surely represented in the math.
ematical models and computer simulations to which the labe]
cooperative computation is usually applied. The research de-
scribed in this article is an attempt to add another level of
meaning to computational cooperativity by starting with
elemental units having preferred inputs and means for learn-
ing how to obtain them in a variety of environments. Where-
as a set of computational units whose activity is mutually
supporting through excitatory interactions may be usefully
regarded as a coalition, a set of self-interested adaptive units
in a similar arrangement may be understoed to have entered
into this configuration because it furthered their individual
interests to do so. We therefore gain some sense both of how
the coalition formed and why it is maintained.

A major factor affecting the ability of A5 _p elements
to learn as hidden elements of networks is their use of ran-
domness. Spontaneous random activity gives 4 5 _ p elements
the ability to improve performance under response contin-
gencies falling in arbitrary regions of contingency space.
We have argued that this ability is essential for network self.
organization because each component’s environment im-
plements time-varying contingencies that cannot be guaran-
teed to remain within the “easy™ regions of contingency
space. Although we have not demonstrated it here, deter-
ministic elements such as those reviewed in the Section
“Relationship of the A, _p element . . .” are not able to
do this and fail as adaptive network components except in
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simple cases. Inwitively, the random component of an
Ag_p element’s activity provides vasiety that causes the
activity of a network to explore more thoroughly the space
of activity pattems. Deterministic elements do not test
enough possibilities before they stop learning. As an A R-P
element’s weights increase in magnitude, its behavior be-
comes more deterministic in a way carefully controlled to
prevent the inferior actions from dominating.

The simulations presented here show that networks of
Ag _p elements are able to learn to implement associative
mappings that are beyond the capabilities of individual
elements. More importantly, they are able to do this when
being directed by evaluative feedback that is based on knowl-
edge of “what” the network as a whole should accomplish
but no knowledge of “how" the network should accomplish
it. It is commonplace to postulate the existence in nervous
systems of command hierarchies in which high-level com-
mands are directed to lower-level processes that are able 10
carry them out. The form of leamning with which we have
been concerned provides a means for a subordinate process
to acquire the knowledge required to carry out such com-
mands. The “what” knowledge of the superordinate center
is sufficient to generate evaluative feedback for its sub-
ordinate but is not sufficient to provide detailed instruction.

Network learning algorithms capable of learning under
these conditions in an efficient and reliable way have re-
mained elusive despite considerable effort over the last thirty
years. We can by no means claim that the approach described
here solves all of the problems. We have not extended the
A j _p convergence theorem to networks of 4 R p elements,
and we have not yet answered the-critical questions concern-
ing the rate of learning and how it changes as the networks
become larger. It is relatively easy to devise algorithms that
are guaranteed to find optimal solutions by *“*brute-force™
search of the space of all possible weight values. The point
is to do it much more quickly than these, or more quickly
on the average, while probably settling for solutions that
are sufficiently good but not necessarily optimal. We are
currently in the process of performing comparative simula-
tion studies that will allow us to suggest answers to these
questions. At present we only know that for relatively small
networks the simplest brute-force search generally yields
almost no improvement in performance by the time the
A g _ p networks are performing near optimally.

As we mentioned in the introduction, our research is
an attempt to study networks of adaptive elements posses-
sing enough but not more behavioral sophistication to allow
them to learn to enter into cooperative relationships with
other elements like themselves. It is therefore driven by
computational, rather than biological, issues. But an assump-
tion common to nearly all theoretical studies of networks of
neuron-like computing elements is that insight can be gained

into biological mechanisms by studying the computational.

problems they apparently solve and by proposing mechanisms
that are compatible with presumed biological constraints
(Marr and Poggio 1977). We believe that the problem of
learning by the “hidden" elements of a network is fundamen-
tal whether the network is of natural origin or is man-made.
It is hard to imagine where explicit instructional information
might come from for all of the neural units:involved in
long-term adaptation to unforeseen changes in the demands
made on an organism’s behavior. On purely logical grounds,

the credit-assignment problem in its various forms seems
inescapable. The strategy illustrated Fv our research, in
which credit assignment is accomplished through the co-
operative interaction of stochastic self-interested adaptive
components, appears to have promise both as a technique
in man-made networks and as a hypothesis about neural
networks. Provided the components are sufficiently robust,
reliable learning is a more or less natural consequence of the
interaction of self-interested adaptive components. However,
as we have attempted to make clear, the required degree of
robustness is not easy to achieve, and has not been achieved
by neuron-like computational elements studied in the past.

It is fitting to close by paraphrasing a remark made by
the evolutionary biologist G. C. Williams (while discussing
populations of organisms, 1966): We urge the reader to
maintain a conceptual distinction between a network of
adapted components and an adapted network of components.
The behavioral success of the networks we have presented is
an incidental consequence of the adaptations by which
each component attempts to improve its own performance —
they are networks of adapted components. It is not at all
paradoxical that the behavioral capabilities of such a net-
work can far outstrip the behavioral capabilities of any of
its constituent elements.
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