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From Chemotaxis to Cooperativity:
Abstract Exercises in Neuronal

Learning Strategies
Andrew Barto

Summary

In this chapter I draw on parallels that have been made between neurons and
free-living unicellular organisms, to explore the idea that basic neural learning
mechanisms have an abstract structure similar to that of the chemotactic behavior of
certain free-living unicellular animals. The major line of support that I bring to bear
on this hypothesis consists of theoretical and computational results relating to the
collective behavior of neuron-like units that implement the suggested learning
mechanism. These results show that such neuron-like units are capable of learning
how to behave as cffective decision makers in distributed systems and are able to
learn how to cooperate with one another to solve problems that the individual units
are not able to solve. The considerable range of collective behavior that emerges
from a few simple principles, suitably refined, suggests that behavior patterns seen
in unicellular organisms might serve as models for aspects of the learning
capabilities of mature neurons.

5.1 Introduction

A large part of contemporary computer science is devoted to the study of
parallel and distributed processing. Although parallel processing and distributed
processing are often not distinguished, computer scientists do make a distinction
between them that, while not being completely sharp, nicely encompasses the
perspective I take in this chapter. When multiple processors cooperate closely to
perform a task that somehow has been divided among them, the term parallel
processing applies. The term distributed processing, on the other hand, applies
when multiple processors cooperate more loosely in performing separate tasks
(Kleinrock, 1985). In the first case, a problem's potential for concurrency is
exploited to achieve a faster solution; whereas in the second, distribution is forced
on the system by natural circumstances. Distributed processing systems come
about, for example, when the data do not arise from a localized source and
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5.2 Neurons and unicellular organisms

Providing biological motivation for the learning methods to be considered are
the capacities of free-living unicellular organisms for goal-directed motility and
similarities that have been noted between these organisms and neurons. Much of the
study of single-cell movement is based on its potential relevance to cell motility in
multicellular organisms, for example, to the migration of embryonic cells in
morphogenesis and epithelial cells in wound healing. Other studies, however, are
motivated by the relevance of unicellular organisms as models of the membrane
mechanisms and behavior of excitable cells. For example, one reason the ciliated
protozoan Paramecium is being studied is because it responds to sensory
stimulation by Ca2+-mediated depolarization which causes backward swimming by
reversing the ciliary beat. With repolarization, the cells swim forward again but in a
new direction. Overall, the behavioral response seems to be regulated by eight
different ionic conductances together with the participation of cAMP and cGMP
(Hinrichsen & Schultz, 1988).

Bacteria such as Escherichia coli, Bacillus subtilis, and Salmonella
typhimurium are also studied for their potential relevance to neurobiology. The
work of Koshland (Koshland,1980) most clearly explores the possible relationship
between bacterial chemotaxis and neuronal function. Even though they are not
eukaryotes, bacteria share many of the properties of neurons. Like neurons, they
have chemical receptors for sensing their environments, they contain a signal
processing system of moderate complexity, and they produce a response: release of
neurotransmitter in the neuron's case and the reversal of flagellar rotation in that of
the bacteria. Bacteria also show adaptation, memory, and sensory integration that
may resemble those processes in neurons (Koshland,1980). Lackie (1986) provides
additional information on bacterial chemotaxis and other movement strategies of
single cells.

Most relevant to the neuronal learning method I describe below is the
chemotactic behavior of bacteria such as those studied by Koshland. Such a
bacterium propels itself along a relatively straight path by rotating its flagella, which
form a bundle. Upon reversing the direction of flagellar rotation, the bundle
becomes disorganized, which causes the bacterium to stop and tumble in place. As
the flagella continue to rotate in this new direction, they reorganize and cause the
bacterium to again be propelled on a straight path but in a new, randomly
determined, direction. A kind of chemotaxis, which is the directed response to a
chemical substance in the environment, results because the frequency of flagellar
reversal is modulated by movement with respect to levels of attractant and repellent
chemicals. Reversal frequency decreases if movement is toward higher attractant
concentrations and increases if movement is toward lower concentrations.
Repellents have the opposite effect. This modulation of flagellar reversal biases
locomotion so that the bacterium finds, and remains near, places of maximal
attractant concentration or minimal repellent concentration. It is an effective strategy,
particularly when the gradient information is very noisy.
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This behavior pattern has been called the 'Run-and-Twiddle Strategy": if
things are getting better, keep doing what you are doing; if things are getting worse,
do something else (Selfridge, in press). It is called klinokinesis with adaptation
when played out over space by bacteria. Klinokinesis refers to the alteration of the
direction of travel, and adaptation refers to the fact that the sensory system responds
to changes in concentration rather than to absolute concentrations. We may also
recognize in ‘Run-and-Twiddle' a variant of the 'Win-Stay / Lose-Shift’ strategy
that has been studied by psychologists. In this case, winning and losing
respectively correspond to swimming towards higher and lower attractant
concentrations (or lower and higher repellent concentrations). An important
distinction between the 'Run-and-Twiddle' behavior of bacteria and the usual form
of 'Win-Stay / Lose-Shift' is that the latter behavior pattern is deterministic whereas
the former is probabilistic. It is the probability of changing swimming direction (i.e.
of twiddling or shifting) that is increased by losing, and it is the probability of
swimming in the same direction (i.e. of running or staying) that is increased by
winning. As I discuss below, the probabilistic nature of this behavior pattern is
important because it has advantages when uncertainty is present in the task.

Koshland (1980) proposed a model for the regulation of bacterial tumbling
that is relevant here because it suggests how aspects of the neuronal leaming rule I
describe below could be produced by neurons. That is, one can postulate a
mechanism for altering neuronal firing rate in response to afferent signals that is
analogous to how a bacterium's sensory signals may alter the frequency of flagellar
reversal. Although the details of how a model of tumble regulation might apply to
neurons has to await the description of the neuronal learning rule given below, it is
appropriate to describe Koshland's model of tumble regulation here. According to
this model, flagellar reversal is controlled by the concentration of a chemical
response regulator, X, that ordinarily varies randomly about a background level
Xcrir. When the concentration of X is above Xcrir, tumbling is suppressed; when
below Xcris, tumbling frequency is enhanced (Figure 5.1). The response regulator,
X, is formed from a substrate, W, with a rate Vf, and decomposed with rate V¢ to
product Y. Ordinarily, Vfapproximately equals Vg, 5o that the concentration .of X
shows a small variation about a fixed level. This shared value of Vfand V¢ is, in
turn, regulated by the rate at which attractant and repellent molecules bind to
receptors. This is hypothesized to occur by means of alterations in the reactions that
produce the enzymes required for the formation and decomposition of X.
Swimming through higher attractant concentrations results in higher, but still equal,
values for Vfand V4. Higher repellent concentrations result in lower values for Vf
and V4. Thus, the absolute levels of attractant and repellent concentrations do not
influence the background concentration of X and hence do not alter tumble
frequency, as is appropriate to describe the behavior of bacteria sensing uniform
levels of attractants and repellents over time.

However, in the model it is assumed that the rares at which Vyand Vg change
in response to changes in attractant and repellent concentrations differ, with Vf
changing more quickly than V{4 . Thus, upon sensing an increase in attractant
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Figure 5.1 A modcl for bacterial chemotaxis from Koshland (1980).

concentration, the concentration of X undergoes a transient increase due to Vfbeing
temporarily larger than V4. This transiently suppresses tumbling. Similarly,
decreases in attractant concentration, or increases in repellent concentrations, cause
transient decreases in the concentration of X and increases in tumble frequency. As
long as attractant concentrations are increasing, as when the bacterium is swimming
up an attractant hill, tumbling remains suppressed as V{ lags behind Vf. Similarly,
tumbling is enhanced upon swimming down an attractant hill. According to this
model, then, both the adaptation to constant levels of attractant and repellent
concentrations and the short-term memory required to provide the information
needed to determine attractant and repellent gradients are produced by the dynamics
of the cellular biochemistry and not (of course) by networks of cells.

5.3 Control and uncertainty

The first step in translating and extending chemotactic-like behavior patterns
into specific hypothetical neuronal learning rules is to place these behavior patterns
within a theoretical context that can help us extract their fundamental features. In
trying to place the bacterium's klinokinesis with adaptation within a theoretical
context, one first regards it as a simple hillclimbing method, as indeed it is, but to
stop there obscures some of the issues involved in understanding the nature of this
behavior. The hillclimbing consequences of the bacterium's behavior pattern are
part of a global view that goes beyond the local task faced by the organism from
moment to moment. Probabilistic 'Win-Stay / Lose-Shift’ is an appropriately
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microscopic characterization of the strategy, but what kind of rask is faced locally
by the organism? It is not the usual hillclimbing task.

1 think this local task is best characterized as a control task under conditions of
uncertainty. The bacterium interacts in a closed-loop fashion with an environment
on which its actions exert only modulatory control. It does not have the ability to
place itself instantaneously anywhere in space (as is often assumed in framing more
abstract optimization tasks); it does not even have the ability to choose a specific
direction of travel. Moreover, it has neither a sufficiently rich sensory repertoire nor
a sufficiently elaborate internal representation of its local environment, we may
safely assume, to allow it to determine which of its two actions (reversing or not
reversing flagellar rotation) is the best at any instant. Probabilistic 'Win-Stay / Lose-
Shift' (where winning, staying, losing and shifting are all suitably defined in terms
of spatial movement) is a control rule that produces effective hillclimbing behavior,
given the kinds of attractant distributions encountered, despite the bacterium's
restricted capabilities in directly controlling and sensing its environment.

A free-living cell faces uncertainty due to the complexity of the medium in
which it lives and its limited local view. A cell in a multicellular organism faces
uncertainty for the same reasons, but in this case, these factors arise in part from the
decentralization implied by the distributed nature of the system. Remote components
can have only limited information about each other and the overall system of which
they are parts. Following Wheeler (1985) we distinguish between two types of
uncernainty: endogenous uncertainty is uncertainty due to unknown aspects of the
behavior of other components in the same system; exogenous uncertainty is
uncertainty due to unknown aspects of the system's external environment and
chance external events. In the examples described below, both kinds of uncertainty
are factors, but let us first examine a deceptively simple decision problem involving
uncertainty.

5.4 A decision problem under uncertainty

Suppose you are given two coins, which are distinguishable as Coin 1 and
Coin 2, and you are to conduct a series of trials, or experiments, in each of which
you select one of the coins, flip it, and note the outcome (head or tail). Nothing is
known about the coins except that they may not be fair. The object of your task is to
select a coin at each step, based on knowledge of the history of previous selections
and observations, so as 10 maximize the expected number of heads over some finite
or infinite time interval. Clearly, you would like always to select the coin with the
larger probability of turning up heads, but you do not know, in fact, you can never
know with certainty, which coin this is. Two factors influence each selection: (1)
the desire to use what you already know about the coins to obtain immediate payoff,
and (2) the desire to acquire more knowledge about the coins in order to make better
selections in the future. More generally, the first factor is the desire to control the
environment based on the current level of knowledge in order to improve
performance, whereas the second factor is the necessity to identify the environment
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in order to make better control decisions in the future. These two factors - the need
10 control and to identify - ordinarily conflict: the best decision according to onc is
not best according to the other. Identification requires performing experiments
designed to probe the environment for new information, something that by its very
nature requires abandoning short-term performance goals. We can see the
control/identify conflict in the task faced by the chemotactic bactertum. The
bacterium’s movement must not only bring it toward higher attractant concentrations
but must also serve to detect the gradient of the attractant through the comparison of
successively sensed attractant levels.

The decision problem just described in terms of two coins is probably the
simplest example showing the control/identify conflict. It is known as the ‘two-
armed bandit’ problem, studied first by Thompson (1933). It is a problem involving
the sequential allocation of experiments and has both theoretical and practical
importance (the coins, for example, may be replaced by two clinical treatments and
the trials by patients). Berry & Fristedt (1985) provide a comprehensive treatment
of this subject and a useful annotated bibliography. This class of decision problem
is of interest here because the hypothetical neuronal learning rule we explore is a
direct extension of one type of strategy that has been applied to these tasks.

5.5 Stochastic learning automata

Of the several theoretical traditions that have developed around the problem of
the sequential allocation of experiments, I focus on the theory of learning automata,
w hich originated in the work of the Soviet cybemetician M.L. Tsctlin (1973) and is
currently being pursued by engineers (Narendra & Thathachar, 1974), where
stochastic learning automaton algorithms are the primary subjects of study. Similar
algorithms were independenily developed by mathematical psychologists (e.g.
Estes, 1950, Bush & Mosteller, 1955). Figure 5.2 shows a stochastic learning
automaton interacting with a random environment. At each time step in the
processing, the automaton randomly sclects an action from a set of possible actions
(ay, ... an), where a; is chosen with probability p;. The environment then
cvaluates the action and transmits a payoff back to the automaton. For simplicity,
we consider only the case in which the payoff is either 'success' or 'failure’, but the
theory extends to the case of a range of payoff values. The environment determines
the payoff according to a set of probabilities {dy, ..., d,)}, where d; is the
probability of delivering success given that action a; was selected. Upon receiving
the payoff, the automaton updates its action probabilities depending on the action
chosen, its current action probabilities, and the payoff received.

Rules for updating action probabilities increase the probability of the action
chosen if the payoff indicates success, and decrease it if the payoff indicates failure.
The other action probabilities are adjusted so that the new probabilities still sum to
one. The magnitudes of these probability changes as functions of the current
probabilities are critical in determining the performance of the update rule.
Reginning with no knowledge of the success probabilities, the objective of the
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Success probabilivies dy. .

(e, = prob, of success given action a,)

y

Random envitonment
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learning autematen
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Figure 5.2 Stochastic lcarning automaton interacting with a random environment.

automaton is to improve its expectation of success over time. Ideally, it should
eventually choose, with probability 1.0, the action corresponding to the largest
success probability. Many different algorithms have been studied under a number of
different performance measures, and many convergence results have been proven
(Narendra & Thathacher, 1974).

It is important to note that although the action probabilities, p;, i=1,.. ., n,
must sum to one, the success probabilities, d;, do not have to because they are the
probabilities of success conditional on the action selected. For example, consider
the case of two actions - the case corresponding to the ‘two-armed bandit' problem
where d; is the probabability of Coin i coming up heads. Each point in the unit
square ‘contingency space’ shown in Figure 5.3 represents a pair of head
probabilities, (d). d3), for two possible coins. Assuming that dy > d3, so that Coin
1 is the best, we can restrict attention to the lower triangle. If we knew, a priori, that
the point corresponding to the task being faced falls within a restricted region of
contingency space, we could take advantage of this knowledge in devising an
algorithm.

For example, the point (.6, .4) corresponds to a task in which the
probabilities happen to sumn to one. This task is relatively easy because the best
action (select Coin 1) tends to yield success more than half the time, whereas the
other action tends to yield success less than half the time. If we knew that the
success probabilities summed to one, we could devise a simple algorithm that
would do well; in fact, we could determine (in the limit) the best action without ever
pertorming one of the actions. The difficulty is that we would like an algorithm that
converges to the best action for tasks falling anywhere within contingency space. It
turns out that this is not so easy. and in general it is necessary to continue to
perform both actions with non-zero probability in order to counter the
control/identification dilemma.
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Success prob. given action 1
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Figure 5.3 Contingency space for the two-action casc.

Consider, for example, the tasks corresponding to the points (.9, .8) and
(.2, .1) in the contingency space of Figure 5.3. In the first task, both actions yield
success with a high probability, making it difficult to decide which is the best.
Unsophisticated algorithms often converge to the inferior (but still good) action. In
the second task, failure usually results no matter what action is chosen.
Unsopbhisticated algorithms tend to oscillate under these conditions. Fortu nately,
there are fairly simple stochastic learning automaton algorithms that are able to
approach optimal performance for arbitrary contingencies. Here T omit details,
which involve subtle issues of stochastic convergence, and simply call such
learning automata competent. That such learning automata choose their actions
probabilistically contributes importantly to their competency. The hypothetical
neuronal learning rule we have studied uses a probabilistic firing mechanism
because it is an elaboration of 2 competent stochastic learning automaton.

I would like to make two additional observations about learning automata
before turning to their collective behavior. First, the 'Win-Stay / Lose-Shift'
strategy in its deterministic form is the first learning automaton studied (Robbins,
1952; Tsetlin, 1973). It is an example of a learning automaton and has been shown
to perform better than a totally random strategy for selecting actions, but is far from
optimal in these types of decision tasks. Note that the deterministic ‘Win-Stay /
Lose-Shift' strategy is similar in some respects to an error-correction neuronal
learning rule, such as the perceptron rule, in that such a rule only changes weights
upon error. In contrast, the rules we consider here change weights more upon
success than they do upon failure, a feature essential for their performance in
uncertain environments.

A final observation about the learning automaton formalism concerns the
meaning of the 'environment.' This is an abstract formalism designed to allow
certain kinds of theoretical questions to be framed precisely, and one should not
underestimate the degree of its abstraction when relating the formalism to biological
systems. In particular, Figure 5.2 shows the environment directly computing the
payoff and the learning automaton having a specialized input for receiving it.
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Figure 5.4 An alternative way 0 vicw the intcraction between a lcamning automaton and its
cnvironment,

However, this is an abstraction that can be implemented in many ways, including
that shown in Figure 5.4 in which a learning automaton and a ‘critic’ (which may
itself be adaptive as described by Barto et al., 1983), comprise a learning system
(within the dotted lines) that does not receive specialized payoff signals from its
environment. In the description of the neuron-like unit given below, the unit has a
specialized input pathway for receiving payoff because this seems to be the simplest
way to implement the learning rule. However, one can consider units to which
payoff is effectively delivered via many pathways, which may also carry other
kinds of information, by regarding the unit as preferring some input patterns over
others. This kind of implicit payoff may be a more appropriate model for some
purposes.

5.6 Collective behavior of learning automata

The random environment shown in Figure 5.2 is an extremely general model
of an environment that behaves unpredictably. The ability of a competent learning
automaton to improve performance in any such environment serves that automaton
well when it has to interact with an environment containing other learning automata.
This is the basis for understanding the behavior of collections of learning automata.
Figure 5.5 shows a collection of N learning automata interacting with a common
environment. The payoff to each automaton depends on the actions of the other
automata in addition to its own action. Two different cases are usually studied. In
the simplest, each automnaton receives the same payoff. This is known as the team
problem, or more technically, the ‘decentralized team problem with incomplete
information’ (Narendra & Thathachar, 1974). In a game problem, on the other
hand, each automaton receives a different payoff. In this case there may be conflicts
of intcrest among the automata, and the question of what constitutes optimal
collective behavior involves the difficult questions studied by game theorists.

A variety of theoretical results exist about the performance of learning
automata in team and game problems. In team problems, competent learning
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Team: same payoffs
Game: different payoffs

Figure 5.5 A collection of N lcarning automata interacting with a common environment.

automata have been shown to monotonically improve their performance (Narendra
& Wheeler, 1983). In the case of zero-sum games (games of pure conflict),
competent learning automata converge to the game's solution in an appropriate
probabilistic sense (Narendra & Thathachar, 1974). To illustrate team and game
tasks, I briefly describe two examples that Tsetlin presented in a 1965 lecture to
physiologists (Tsetlin, 1973).

The first example is the so-called Goore game (although it is a team problem)
which I describe as Tsetlin did in terms of human players. Suppose there is a
referee and a number of players. The referee can see the players but the players
cannot see one another. At the sound of a buzzer, each player is to raise one or two
hands. The referee determines what percentage of players raised one hand, then
pays each player a fixed amount with a probability that depends on this percentage
(for example, according to the functional relationship shown in Figure 5.6). The
process repeats each time the buzzer sounds. It can be shown that for any number
of players implementing a competent learning automaton strategy, the process
converges so that eventually the payoff probability is maximized. The result
requires a payoff probability function that has a single maximum, such as that
shown in Figure 5.6. Using this particular function, eventually 20% of the players
will raise one hand at the sound of the buzzer.

In a Goore game, then, each learning automaton (player) receives the same
payoff which is determined by the total number of learning automata that performed
the designated action. This is a special case of a team problem where, more
generally, the payoff to all the automata can depend on the paitern of automaton
actions and not just their count. From the perspective of any individual learning
automaton, the task is to try 1o maximize individual payoff in the face of the
exogenous uncertainty produced by the probabilistic payoff procedure (Figure 5.6)
and the endogenous uncertainty produced by the activity of the other automata -
activity that is not directly observed. As far as any of the players is concerned, there
are no other players, only a noisy, and non-stationary, environment. -

One of the reasons Tsetlin was interested in the Goore game was its potential
relevance to the process by which motor units are recruited. If the collection of
players is thought of as a motor neuron pool, then the learning process is capable of
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Figure 5.6 Payoff probability as a function of collective action in the Goore game (afier Tsetlin,
1973).

adjusting the number of motor neurons that fire. What is perhaps most interesting
about this is that, as Tsetlin points out, the payoff does not have to be determined
based on the count of the number of neurons firing; it can depend on, say, the total
force generated by the motor units, or perhaps on more distal consequences of
motor unit activity. The learning process would still produce the required number of
active motor neurons (assuming the team does not get stuck in a local optimum).
Thus, the collection of learning automata can discover how to achieve some target
configuration without requiring an agent in its environment that already knows how
the target can be achieved, as would be required if only supervised learning were at
work.

Let us look briefly at another example of collective behavior, again following
Tsetlin (1973), by considering what he called the distribution game, which, unlike
the Goore game, involves players that receive different payoffs. Imagine a
collection of animals, each of which feeds from one of a set of feeding troughs.
Each trough contains a certain amount of food. At a signal, each animal selects a
feeding trough without any form of communication with the other animals. The
amount of food each animal receives at each trial depends on the number of animals
that have also chosen that trough at that rial. We assume the total amount of food in
a trough is divided equally among the animals that approach it. The troughs are then
refilled with the same amount of food as before, the signal occurs again, and the
process repeats for a sequence of trials. Unlike the team situation, here the players
receive different amounts of payoff and can have conflicts of interest. However, to
the players, the situation appears identical to that of the Goore game, and competent
learning automata learn to distribute themselves in a way that is ‘just as reasonable
as for people who would know the contents of each trough' (see Tsetlin, 1973, pp.
115-118).

Why do learning automata have to be competent in order to operate effectively
as team or game players? Recall that a competent learning autornaton is one that can
learn which of its actions is best in the absence of a priori restrictions on the
contingencies it faces. When a learning automaton's environment in part consists of
other learning automata, then it faces contingencies that are constantly changing as
the other automata are learning (a non-stationary environment). There is no
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guarantee, thercfore, that the contingencies faced by any of the automata in the
collection will remain in any pre-designated region of contingency space. If an
automaton happens to be confronted with particularly easy contingencies, it will
learn quickly; confronted with difficult contingencies, it will learn more slowly but
will not prematurely scttle on the wrong action. Learning automata that are not
sufficiently competent, such as deterministic learning automata, will sometimes
learn to participate in appropriate collective behavior and sometimes not.

In order to apply learning automata to the tasks just described - the Goore
game and the distribution game - it had to be assumed that the player§ were not able
1o communicate directly with one another. This is because the learning automaton
formalism (Figure 5.2) does not have provision for input to the automaton other
than the payoff signal. Tsetlin made the following comment:

"We have discussed very simple forms of behavior, and for this reason
we limited ourselves to the simplest types of automata. The exchanges
of information among these automata takes place in the language of
penalties and rewards. Although this language seems universal enough,
it would, however, be interesting to also look at more complicated
automata that possess some specialized language to communicate with
other automata. Such automata are needed to describe more complex
forms of behavior. These more complex behavioral forms necessitate
the use of much more diverse information.’ (Tsetlin, 1973, p. 125.)

Our research has focussed on extending the theory of learning automata in the
direction Tsetlin suggested in this quoted passage. We now consider more elaborate
learning automata that are more like neurons because they make decisions
conditionally on input signals which provide information about the state of their

environments.

5.7 Associative learning automata

Figure 5.7 shows a learning automaton receiving information, which we call
context input, in addition to the payoff signal from its environment (cf. Figure 5.4).
The bold arrows in Figure 5.7 are intended to suggest that those pathways
potentially transmit massive amounts of data; that is, they represent vector rather
than scalar signals. The associative learning automaton must learn how to act
conditionally on the context input in order to maximize its expected payoff. Whereas
the learning automata described above have to learn a single optimal action (or
perhaps a single optimal probability for each action), an asscciative learning
automaton tries to learn a rule, or mapping, associating context input with optimal
actions. What action is best depends on the contingencies currently being
implemented by the environment, and usually an environment can provide
information that can be associated with appropriate actions. One can think of the
context input as providing a clue as 1o the state of the environment. Context input
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Figure 5.7 A modificd vcrsion of Figure 5.4 showing an associative leaming automaton
receiving context input in addition 10 payoff input.

therefore plays a role similar to that of discriminative stimuli in instrumental
conditioning.

Associative learning automata face two kinds of problems. First, they have to
learn to classify context input patterns into classes, where all patterns in a given
class signal that the same action is best when performed in the presence of any of
those patterns. Second, they have to discover what these best actions are. The first
problem corresponds to the pattern classification tasks for which a variety of
learning rules for neuron-like units have been developed, e.g. the perceptron rule
(Rosenblatt, 1961) or Widrow & Hoff's (1960) Least-Mean-Square (LMS) rule.
Here, however, there is no teacher able to directly specify desired responses. The
learning system has to discover what the best actions are by probing its environment
in the manner of a learning automaton.

We have developed numerous algorithms for associative learning automata,
but here I focus on the most successful one: the Associative Reward-Penalty, or
AR-P, algorithm, first introduced by Barto & Anandan (1985) and extensively
discussed by Barto (1985). It is a hybrid of perceptron/LMS and stochastic learning
automaton algorithms that tums out to be closely related to Thorndike's (1911) Law
of Effect and to the 'selective bootstrap adaptation’ rule of Widrow et al. (1973).
The AR-P algorithm applies to a neuron-like unit with a number of input pathways
for context input and a specialized input pathway for payoff. I describe its behavior
informally; details can be found in the references.

The unit has binary output, its two actions being 'firing’ and 'not firing'. As
is usual, there is a weight for each context input pathway, and the unit's output is
determined by the weighted sum of the context input signals. However, the output
depends in a random way on the weighted sum: the more positive the sum, the more
likely the unit is to fire; the more negative, the less likely it is to fire (this
input/output behavior is identical to that of the Boltzmann units of Ackley et al.,
1985). Thus, the AR-P unit is like a two-action stochastic learning automaton except
that its action probabilities depend on the context input in a manner determined by
the synaptic weights. If an action is followed by feedback indicating 'success’, the
weights are changed so as to make that action more likely in the presence of the
context input pattern in which that action was taken (and patterns similar to it). If an
action is followed by ‘'failure’, the weights are changed to make that action less
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likely. The role of the random action-generation process is the same as it is for a
stochastic learning automaton: to generate sufficient variety in the unit's behavior so
that the identification aspect of the unit's task is accomplished effectively.

Note that it is not the synaptic weights that we vary randomly but the unit's
firing activity. It would be quite possible to consider a system in which each
synapse were represented by a separate (non-associative) stochastic learning
automaton, but then the learning process for a single unit would require solving a
team decision problem. Leaming in this case would be far less efficient than in the
one we are considering, in which knowledge is used about how the individual input
signals are combined by the unit. Indeed, it would even be possible, and perhaps
interesting, to consider each synapse as containing a team of non-associative
learning automata, each representing a neurotransmitter vesicle or receptor engaged
in a kind of Goore game. Relying solely on this mechanism would be inefficient in
the extreme, but learning automata operating at all these levels and facing locally-
defined payoff structures could yield very robust adaptive capabilities.

We see, then, that an AR-P unit in effect just implements the Law of Effect,
but the weights have to be updated so that the unit is competent (see Section 5.5) in
all of the contexts to which it is exposed, or at least, is competent within the
confines of its ability to discriminate contexts. An AR-P unit achieves this (but under
the restriction that the context input patterns are linearly independent; see Barto &
Anandan, 1985). In addition to its probabilistic action-generation process, a feature
of the AR-P unit that is critical for its competency is an asymmetry between the
magnitudes of the weight changes that occur in the 'success' and 'failure’ cases. A
much smaller step size must be used in the case of failure; indeed, as the weight
changes made upon failure get smaller, the asymptotic behavior of the unit
improves. Competency seems to require updating weights in a manner strikingly
different from that of an error-correction rule like the perceptron rule, which
changes weights only when its response is incorrect. It may be of more than
passing interest that the asymmetry between the success and failure cases, required
for an AR-P unit to be competent, exactly corresponds to the change in Thorndike's
first symmetrical version of the Law of Effect that he adopted to bring his theory
into closer accord with experimental observations (see, for example, Hilgard,
1956).

My colleagues and I have written extensively on the differences between
associative learning automata and the more familiar error-correction rules for
supervised learning commonly used in artificial neural networks (Barto et al., 1983,
Barto, 1985). I limit my remarks here to a few observations about differences
between the tasks each is capable of solving. As usually formulated, supervised
learning, where a teacher directly specifies the desired responses, does not involve
any form of feedback through the environment. The environment simply repeatedly
presents input patterns paired with desired responses. This is a form of open-loop
learning akin to Pavlovian conditioning. There is feedback involved in error-
correction rules, of course, but it is feedback of the unit's own response, which can
take place within the unit.
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In an alternative formulation of error-correction rules for supervised leaming
that places the error calculation outside of the unit, there is feedback passin
through the unit's environment, but it is very different from the evaluative feedbacﬁ
unden: which associative learning automata operate. According to this formulation
lca.rmng occurs under the control of error signals that tell the unit how to change it.;
actions, whereas evaluative feedback signals do not do this. In supervised learning
a positive error tells the unit that its response was too high, a negative error tells i;
that‘ns response was too low, and an error of zero signals the desired state of
affairs. On the other hand, in the kind of leamning we are considering here, the
payoff would be 'failure’ for both the cases of positive and negative error, anc'l the
learning system would have to make adjustments so as to decrease its tendency to
do whatever it did, not just decrease or increase its response as specified by the sign
of the error. Moreover, if the environment is noisy, then the adjustments must be
rx}adc carefully to ensure adequate testing of alternatives. Of course, the payoff
signal need not be derived from a signed error in this manner (no error = success
plus and Winus error = failure). It can be generated by a critic (Figure 5.7) tha;
knows neither what the actual response was nor what it should have been. A critic
can generate a payoff based on knowledge solely of what it wants accomplished and
not of how the learning system can accomplish it.

It should be clear that the kind of leaming we are considering can be applied
10 supervised-learning tasks (Barto & Jordan, 1987), but it applies to more difficult
tasks as well. However, the usual error-correction rules for supervised-learning are
not competent in the kinds of tasks we are considering here. These tasks involve
genuine feedback paths through the learning system's environment as in
instrumental conditioning experiments. Describing error-correction as 'trial-and-
error' learning, as has often been done, is incorrect and misleading. Trial-and-error
reall)f means 'generate-and-test,” which only applies superficially to supervised-
learning methods. Learning automata, associative or otherwise, are engaged in
learping to control their environments, not just to mimic them. Learning to mimic
environmental events may be an important process in the construction of mental
representations of the environment, but it is not the only process of interest.

.Is it plausible that a single neuron could implement a competent associative
learmng automaton strategy? We can only speculate about possible cellular
mechanisms, but Koshland's model of bacterial chemotaxis described in Section
5.2 suggests a starting point. One of the requirements of such a mechanism, if it is
to operate in real time, is that it must possess a form of short-term memory to retain
a trace of context inputs, and the actions taken in their presence, for sufficient time
to allow the return of evaluative feedback. This requires a mechanism more complex
than Koshland postulated for bacterial chemotaxis (Figure 5.1), but that model
suggests how this short-term memory could be implemented within a cell. We
could, for example, replace the tumble regulator X by a randomly varying
membrane potential or firing threshold, allowing the firing probability to be
conditional on synaptic input. Attractants and repellents would correspond to
various neuromodulators delivered via diffuse projections from brain reinforcement
centers and from sources that are more local. The detection of changes in the
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concentrations of these substances could be accomplished as in Koshland's model,
and traces of relevant past information could be maintained by similar biochemical
means as long as the time interval is not too long (perhaps hundreds of milliseconds
to a few seconds). Traces of the recent past history of synaptic activity would have
to be maintained in some synaptically-local manner. Sutton & Barto (1981) discuss
hypothetical mechanisms for storing these kinds of traces at synapses, and more
recent knowledge about cellular mechanisms suggest others (see, for example,
Alkon & Rasmussen, 1988). Some of the theoretical issues involving time delays
between actions and their consequences have been studied, but this is outside the
scope of the present chapter (see Sutton & Barto, 1981; Barto et al., 1983; Sutton,
in press).

5.8 Collective behavior of associative learning
automata '

The behavior of collections of associative learning automata can be more
complex than the behavior of the collections of non-associative automata considered
above. I present two examples that suggest some of the possibilities. The first
example is a team decision problem illustrating some of the important features of
decentralized decision making that are absent in the non-associative case, and which
I believe may be important in the functioning of the brain. The second example
shows how the problem of leamning in a layered network can be considered as an
extension of the decentralized team decision task, where part of the context input to
a unit is determined by the actions of other units.

5.8.1 Decentralized decision making

In a tutorial on decentralized statistical decision making, Yu-Chi Ho (1980)
used a simple example that emphasizes the ‘essentials of team theory by stripping
away all unimportant details’. I describe the task just as he did, and then I show
how AR-P units learn how to act as effective decision makers in this task. Mr. B,
who lives in Boston, and Mr. H, who lives in Hartford (about 100 miles away),
need to meet in Worcester, about midway between Boston and Hartford, in order to
close a business deal. They decide to meet in Worcester the next day at noon if it
doesn't rain, but are unable to communicate further. As Ho says, 'New England
weather being what it is, an uncertainty has developed about whether or not it is
raining in Worcester when H and B are about to depart for their meeting. Of course,
each of them has access 1o his own local weather information in his city. This
information is in turn correlated with the state of the weather in Worcester as well as
with the information received by the other person.’ Assuming that both Hand B
have to be present to conduct their business and that sunshine in Worcester is
essential to its successful outcome, Ho postulates the payoff matrices shown in
Figure 5.8.
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Rain in Worcester Shine in Worcester
Mr. H Mr. H
go | don'tgo go | don'tgo
M £ 41 -2 Mr.B £ 0] -3
dontgo  |-2 5 don’t go -3 0

Figure 5.8 Payoff matrices for tcam decision problem (aficr Ho, 1980, Figure 1).

Mr. B and Mr. H have to decide whether or not to make the trip to Worcester.
More than this, however, we require them to come up with a strategy for deciding
when to make the trip depending on their local weather conditions. According to Ho
(1980) this problem has the main features of team decision problems (quoting Ho):

1) the presence of different but correlated information for each decision maker about
some underlying uncertainty;

2) the need for coordinated actions on the part of all decision makers in order to
realize the payoff.

If the problem does not have both of these features, then it simplifies. For example,
if the cities involved are so far apart that their weather is uncorrelated, then it is does
not help to consider local weather conditions; if the tasks to be performed by the
decision makers do not require coordination, then the decisions can be made
independently.

In the example task, each decision maker can adopt one of four possible
decision strategies (different mappings from the two possible local weather
conditions to the two possible actions). Thus, there are sixteen possible strategies
for the two players, and which one is best depends on the correlations among the
weather conditions in the two cities. These correlations arise from the joint
probability distribution of the three random variables describing the weather in the
three cities. Given such a distribution function, it is possible to determine which of
the sixteen strategies yield maximal expected payoff. Figure 5.9 is one such joint
distribution given by Ho, and with some computation one can show that the optimal
strategy is for both Mr. B and Mr. H to ignore local weather conditions and always
wravel to Worcester (see Ho, 1980, for details and more complex examples).

This is exactly the kind of problem that associative learning automata, such as
AR-P units, should be able to solve. We investigated this by letting two AR-P units
play the roles of the decision makers as shown in Figure 5.10. A unit firing means
that the decision to make the trip has been made. At each time step, we selected a
weather pattern for the three cities according to a given joint probability distribution.
The weather selected for Boston was coded as a 0 or a 1 and given as context input
to the unit representing the Boston decision maker. Similarly, Hartford's weather
provided context input to the other unit. The weather selected for Worcester
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problems to be solvable by this kind of learning. One way of achieving this is
suggested by the fact that training can be accomplished by agencies that only know
what they want accomplished, but not how it can be accomplished. Modules can
cause things to happen that they cannot do themselves by setting appropriate
contingencies for other modules having the necessary expertise and access to the
necessary information. Analogies with social and economic systems are obvious,
although highly structured regimes that would be unacceptable to organisms like
ourselves would have to exist at these microscopic levels. These are issues we are
exploring in our current research.

5.9 From chemotaxis to cooperativity

In this chapter I have suggested how adaptive strategies that we know are
within the capabilities of single cells can be extended to produce a variety of forms
of collective behavior, including the learning of cooperative interactions. To mitigate
the degree of speculation unavoidable in hypothesizing that neurons, even just some
of them, are competent associative learning automata, I have proceeded in small
steps leading from bacterial chemotaxis to cooperative collective behavior, and
focussed on theoretical questions that have spawned rich theoretical traditions. That
such simple ideas, suitably refined, can underlie a wide range of behavior suggests
that the hypothesis is worth serious experimental study.
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